EC-180
[VQ35DE]
DTC P0037, P0038, P0057, P0058 HO2S2 HEATER
Revision: 2006 December 2006 FX35/FX45
5. CHECK HEATED OXYGEN SENSOR 2 HEATER
Refer to EC-180, "
Component Inspection" .
OK or NG
OK >> GO TO 6.
NG >> Replace malfunctioning heated oxygen sensor 2.
6. CHECK INTERMITTENT INCIDENT
Refer to EC-148, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
>> INSPECTION END
Component InspectionNBS003N1
HEATED OXYGEN SENSOR 2 HEATER
1. Check resistance between HO2S2 terminals as follows.
2. If NG, replace heated oxygen sensor 2.
CAUTION:
Discard any heated oxygen sensor which has been dropped
from a height of more than 0.5 m (19.7 in) onto a hard sur-
face such as a concrete floor; use a new one.
Before installing new oxygen sensor, clean exhaust system
threads using Oxygen Sensor Thread Cleaner tool J-43897-
18 or J-43897-12 and approved anti-seize lubricant.
Removal and InstallationNBS003N2
HEATED OXYGEN SENSOR 2
Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .
Terminal No. Resistance
2 and 3 5.0 - 7.0 Ω [at 25 °C (77 °F)]
1 and 2, 3, 4 ∞ Ω
(Continuity should not exist)
4 and 1, 2, 3
PBIB0970E
EC-188
[VQ35DE]
DTC P0101 MAF SENSOR
Revision: 2006 December 2006 FX35/FX45
DTC P0101 MAF SENSORPFP:22680
Component DescriptionNBS003N3
The mass air flow (MAF) sensor is placed in the stream of intake air.
It measures the intake flow rate by measuring a part of the entire
intake flow. The mass air flow sensor controls the temperature of the
hot wire to a certain amount. The heat generated by the hot wire is
reduced as the intake air flows around it. The more air, the greater
the heat loss.
Therefore, the electric current supplied to hot wire is changed to
maintain the temperature of the hot wire as air flow increases. The
ECM detects the air flow by means of this current change.
CONSULT-II Reference Value in Data Monitor ModeNBS003N4
Specification data are reference values.
On Board Diagnosis LogicNBS003N5
PBIB1604E
MONITOR ITEM CONDITION SPECIFICATION
MAS A/F SE-B1 See EC-138, "
TROUBLE DIAGNOSIS - SPECIFICATION VALUE" .
CAL/LD VALUE
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No load Idle 5% - 35%
2,500 rpm 5% - 35%
MASS AIRFLOW
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No load Idle 2.0 - 6.0 g·m/s
2,500 rpm 7.0 - 20.0 g·m/s
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0101
0101 Mass air flow sensor cir-
cuit range/performance A)
A high voltage from the sensor is sent to ECM
under light load driving condition.
Harness or connectors
(Mass air flow sensor circuit is
open or shorted.)
Mass air flow sensor
EVAP control system pressure
sensor
Intake air temperature sensor
B) A low voltage from the sensor is sent to ECM
under heavy load driving condition.
Harness or connectors
(Mass air flow sensor circuit is
open or shorted.)
Intake air leaks
Mass air flow sensor
EVAP control system pressure
sensor
Intake air temperature sensor
EC-192
[VQ35DE]
DTC P0101 MAF SENSOR
Revision: 2006 December 2006 FX35/FX45
Specification data are reference values and are measured between each terminal and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in dam-
age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.
Diagnostic ProcedureNBS003N9
1. INSPECTION START
Which malfunction (A or B) is duplicated?
A or B
A >> GO TO 3.
B >> GO TO 2.
2. CHECK INTAKE SYSTEM
Check the following for connection.
Air duct
Va c u u m h o s e s
Intake air passage between air duct and intake manifold
OK or NG
OK >> GO TO 3.
NG >> Reconnect the parts.
TER-
MINAL NO. WIRE
COLOR ITEM CONDITION DATA (DC Voltage)
51 L/W Mass air flow sensor [Engine is running]
Warm-up condition
Idle speed
1.0 - 1.2V
[Engine is running]
Warm-up condition
Engine speed: 2,500 rpm 1.6 - 2.0V
67 B/W Sensor ground [Engine is running]
Warm-up condition
Idle speed Approximately 0V
111 W / B ECM relay
(Self shut-off) [Engine is running]
[Ignition switch: OFF]
For a few seconds after turning ignition
switch OFF 0 - 1.5V
[Ignition switch: OFF]
More than a few seconds after turning igni-
tion switch OFF BATTERY VOLTAGE
(11 - 14V)
11 9
120 R
R/B Power supply for ECM
[Ignition switch: ON] BATTERY VOLTAGE
(11 - 14V)
EC-194
[VQ35DE]
DTC P0101 MAF SENSOR
Revision: 2006 December 2006 FX35/FX45
6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT
1. Turn ignition switch OFF.
2. Disconnect ECM harness connector.
3. Check harness continuity between MAF sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.
4. Also check harness for short to ground and short to power.
OK or NG
OK >> GO TO 7.
NG >> Repair open circuit or short to ground or short to power in harness or connectors.
7. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
1. Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. Refer to Wiring Diagram.
2. Also check harness for short to ground and short to power.
OK or NG
OK >> GO TO 8.
NG >> Repair open circuit or short to ground or short to power in harness or connectors.
8. CHECK INTAKE AIR TEMPERATURE SENSOR
Refer to EC-209, "
Component Inspection" .
OK or NG
OK >> GO TO 9.
NG >> Replace mass air flow sensor (with intake air temperature sensor).
9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR
Refer to EC-427, "
Component Inspection" .
OK or NG
OK >> GO TO 10.
NG >> Replace EVAP control system pressure sensor.
10. CHECK MASS AIR FLOW SENSOR
Refer to EC-195, "
Component Inspection" .
OK or NG
OK >> GO TO 11.
NG >> Replace mass air flow sensor.
11 . CHECK INTERMITTENT INCIDENT
Refer to EC-148, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
>> INSPECTION END
Continuity should exist.
Continuity should exist.
DTC P0101 MAF SENSOR EC-195
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
Component InspectionNBS003NA
MASS AIR FLOW SENSOR With CONSULT-II
1. Reconnect all harness connectors disconnected.
2. Start engine and warm it up to normal operating temperature.
3. Connect CONSULT-II and select “DATA MONITOR” mode.
4. Select “MAS A/F SE-B1” and check indication under the follow- ing conditions.
*: Check for linear voltage rise in response to engine being increased to about
4,000 rpm.
5. If the voltage is out of specification, proceed the following.
a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
Crushed air ducts
Malfunctioning seal of air cleaner element
Uneven dirt of air cleaner element
Improper specification of intake air system parts
b. If NG, repair or replace malfunctioning part and perform step 2 to 4 again. If OK, go to next step.
6. Turn ignition switch OFF.
7. Disconnect mass air flow sensor harness connector and reconnect it again.
8. Perform step 2 to 4 again.
9. If NG, clean or replace mass air flow sensor.
Without CONSULT-II
1. Reconnect all harness connectors disconnected.
2. Start engine and warm it up to normal operating temperature.
3. Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.
*: Check for linear voltage rise in response to engine being increased to about
4,000 rpm.
4. If the voltage is out of specification, proceed the following.
a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
Crushed air ducts
Malfunctioning seal of air cleaner element
Uneven dirt of air cleaner element
Improper specification of intake air system parts
Condition MAS A/F SE-B1 (V)
Ignition switch ON (Engine stopped.) Approx. 0.4
Idle (Engine is warmed-up to normal
operating temperature.) 1.0 - 1.2
2,500 rpm (Engine is warmed-up to
normal operating temperature.) 1.6 - 2.0
Idle to about 4,000 rpm 1.0 - 1.2 to Approx. 2.4*
PBIB2371E
Condition Voltage V
Ignition switch ON (Engine stopped.) Approx. 0.4
Idle (Engine is warmed-up to normal
operating temperature.) 1.0 - 1.2
2,500 rpm (Engine is warmed-up to
normal operating temperature.) 1.6 - 2.0
Idle to about 4,000 rpm 1.0 - 1.2 to Approx. 2.4*
PBIB1106E
EC-200
[VQ35DE]
DTC P0102, P0103 MAF SENSOR
Revision: 2006 December 2006 FX35/FX45
Specification data are reference values and are measured between each terminal and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in dam-
age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.
Diagnostic ProcedureNBS003NH
1. INSPECTION START
Which malfunction (P0102 or P0103) is duplicated?
P0102 or P0103
P0102 >> GO TO 2.
P0103 >> GO TO 3.
2. CHECK INTAKE SYSTEM
Check the following for connection.
Air duct
Va c u u m h o s e s
Intake air passage between air duct and intake manifold
OK or NG
OK >> GO TO 3.
NG >> Reconnect the parts.
TER-
MINAL NO. WIRE
COLOR ITEM CONDITION DATA (DC Voltage)
51 L/W Mass air flow sensor [Engine is running]
Warm-up condition
Idle speed
1.0 - 1.2V
[Engine is running]
Warm-up condition
Engine speed: 2,500 rpm 1.6 - 2.0V
67 B/W Sensor ground [Engine is running]
Warm-up condition
Idle speed Approximately 0V
111 W / B ECM relay
(Self shut-off) [Engine is running]
[Ignition switch: OFF]
For a few seconds after turning ignition
switch OFF 0 - 1.5V
[Ignition switch: OFF]
More than a few seconds after turning igni-
tion switch OFF BATTERY VOLTAGE
(11 - 14V)
11 9
120 R
R Power supply for ECM
[Ignition switch: ON] BATTERY VOLTAGE
(11 - 14V)
DTC P0102, P0103 MAF SENSOR EC-203
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
Component InspectionNBS003NI
MASS AIR FLOW SENSOR With CONSULT-II
1. Reconnect all harness connectors disconnected.
2. Start engine and warm it up to normal operating temperature.
3. Connect CONSULT-II and select “DATA MONITOR” mode.
4. Select “MAS A/F SE-B1” and check indication under the follow- ing conditions.
*: Check for linear voltage rise in response to engine being increased to about
4,000 rpm.
5. If the voltage is out of specification, proceed the following.
a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
Crushed air ducts
Malfunctioning seal of air cleaner element
Uneven dirt of air cleaner element
Improper specification of intake air system parts
b. If NG, repair or replace malfunctioning part and perform step 2 to 4 again. If OK, go to next step.
6. Turn ignition switch OFF.
7. Disconnect mass air flow sensor harness connector and reconnect it again.
8. Perform step 2 to 4 again.
9. If NG, clean or replace mass air flow sensor.
Without CONSULT-II
1. Reconnect all harness connectors disconnected.
2. Start engine and warm it up to normal operating temperature.
3. Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.
*: Check for linear voltage rise in response to engine being increased to about
4,000 rpm.
4. If the voltage is out of specification, proceed the following.
a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
Crushed air ducts
Malfunctioning seal of air cleaner element
Uneven dirt of air cleaner element
Improper specification of intake air system parts
Condition MAS A/F SE-B1 (V)
Ignition switch ON (Engine stopped.) Approx. 0.4
Idle (Engine is warmed-up to normal
operating temperature.) 1.0 - 1.2
2,500 rpm (Engine is warmed-up to
normal operating temperature.) 1.6 - 2.0
Idle to about 4,000 rpm 1.0 - 1.2 to Approx. 2.4*
PBIB2371E
Condition Voltage V
Ignition switch ON (Engine stopped.) Approx. 0.4
Idle (Engine is warmed-up to normal
operating temperature.) 1.0 - 1.2
2,500 rpm (Engine is warmed-up to
normal operating temperature.) 1.6 - 2.0
Idle to about 4,000 rpm 1.0 - 1.2 to Approx. 2.4*
PBIB1106E
EC-210
[VQ35DE]
DTC P0117, P0118 ECT SENSOR
Revision: 2006 December 2006 FX35/FX45
DTC P0117, P0118 ECT SENSORPFP:22630
Component DescriptionNBS003NR
The engine coolant temperature (ECT) sensor is used to detect the
engine coolant temperature. The sensor modifies a voltage signal
from the ECM. The modified signal returns to the ECM as the engine
coolant temperature input. The sensor uses a thermistor which is
sensitive to the change in temperature. The electrical resistance of
the thermistor decreases as temperature increases.
*: This data is reference values and is measured between ECM terminal 73 (Engine
coolant temperature sensor) and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in dam-
age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.
On Board Diagnosis LogicNBS003NS
These self-diagnoses have the one trip detection logic.
FAIL-SAFE MODE
When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.
SEF594K
Engine coolant temperature
° C ( °F) Voltage* V Resistance k
Ω
-10 (14) 4.4 7.0 - 11.4 20 (68) 3.5 2.1 - 2.9
50 (122) 2.2 0.68 - 1.00
90 (194) 0.9 0.236 - 0.260
SEF012P
DTC No. Trouble Diagnosis
Name DTC Detecting Condition Possible Cause
P0117
0117 Engine coolant tem-
perature sensor cir-
cuit low input An excessively low voltage from the sensor is
sent to ECM.
Harness or connectors
(Engine coolant temperature sensor circuit is
open or shorted.)
Engine coolant temperature sensor
P0118
0118 Engine coolant tem-
perature sensor cir-
cuit high input An excessively high voltage from the sensor is
sent to ECM.
Detected items Engine operating condition in fail-safe mode
Engine coolant temper- ature sensor circuit Engine coolant temperature will be determined by ECM based on the time after turning ignition switch ON
or START.
CONSULT-II displays the engine coolant temperature decided by ECM.
Condition Engine coolant temperature decided
(CONSULT-II display)
Just as ignition switch is turned ON or START 40 °C (104 °F)
More than approx. 4 minutes after ignition ON or
START 80
°C (176 °F)
Except as shown above 40 - 80
°C (104 - 176 °F)
(Depends on the time)
When the fail-safe system for engine coolant temperature sensor is activated, the cooling fan operates
while engine is running.