Page 2 of 57
2
Level Control Systems
Model: Level Control Systems
Production: E32 750iL 88-94 (Hydro-Pneumatic)
E32 740iL 93-94
E38 750iL 95-01
E38 740iL 95-01
E34 Touring 525iT, 530iT
E39 Touring 528iT, 540iT, 525iT (EHC I)
E53 X53.0i, X5 4.4i and X5 4.6is (EHC I)
E53 X5 3.0i, X5 4.4i (EHCII)
E66 745Li, 760Li from 03 EHC
Objectives:
After completion of this module you should be able to:
• Identify BMW Level Control Systems
Page 13 of 57

13
Level Control Systems
Air Suspension Systems (EHC)
Purpose of the System
Air Suspension systems were first introduced on the 1999 E39 Sportwagon. Since then
the E53 (X5) and E65/E66 (7Series) models were available with this new system. EHC are
available is two configurations, the Single Axle Air Suspension System and the Dual Axle
Air Suspension System. The Dual Axle (EHC II) system is only available on E53 X5 models
from the 2002 model year.
EHC systems can be found on the following vehicles:
E39 Sportwagon 528i, 525i and 540i from the 1999 Model Year (Single Axle)
E53 X5 3.0i and 4.4i from the 2000 Model Year (Single Axle)
E53 X5 4.6iS from 2002 (Single Axle)
E53 X5 3.0i and 4.4i from 2002 (Dual Axle EHC II)
E65/E66 from 2003 Model Year (Single Axle)
There are some functional changes with these systems. On EHC, the entire axle load is
borne by the air suspension. The underlying control philosophy of EHC is “Control only
when absolutely necessary”. This means that brief changes in the ride height are not com-
pensated (such as potholes). This avoids any unnecessary control operations.
The advantages of air suspension are as follows:
Control is independent of the vehicle engine
Single-wheel control is possible
Lateral locking is affected
A distinction is made between load and drive states
An inclined load is identified and corrected
However, an inclination is not compensated
Self diagnosis can be performed
Diagnosis with DISplus or GT-1 is possible
An automatic interruption of control takes place in case of cornering and wheel
changes.
Page 14 of 57
14
Level Control Systems
EHC System Overview
EHC I Single Axle Air Suspension E39/E53
EHC II Dual Axle Air Suspension E53
1. Air Supply Unit
2. Rear Axle Air Bellows
3. Ride Height Sensors
4. Pressure Accumulator/
Valve Unit
5. Front Axle Air Bellows
6. Control Unit
Page 15 of 57
15
Level Control Systems
Single Axle EHC I System Components (E39/E53)
The EHC system consists of the following components:
EHC Control Module
Air Springs (2) with Air Reservoirs
Rear Axle Level Sensors
Encapsulated Air Supply (LVA)
Warning Indicator
Control Module
The Control Module is mounted in the module carrier box in the luggage compartment on
the right side. It contains the processing electronics and final stages for operation of the
EHC system.
The control module receives the following inputs for its processing functions:
KL 30 & 31 (Power/Ground)
KL 15
Left & Right Ride Height Sensors
K Bus for;
- Vehicle speed
- Engine running
- Door/tailgate - open/closed
E39 Features 06
EHC Module (E39)
Page 27 of 57

27
Level Control Systems
Two Axle Air Suspension (E53 EHC II)
Purpose of the System
The two axle air suspension system (EHC2) offers advantages over the single-axle air sus-
pension with respect to ride comfort and off-road capability.
Lowering the entire body makes it easier to enter, exit, load and unload the vehicle.
The vehicle's off-road capability was improved by providing the possibility for increasing the
ground clearance of the body.
The driver can now choose between three different ride levels which can be set with a rock-
er switch, as required. Automatic ride-height control for payload compensation and
automatic inclination compensation continue to be fitted.
D De
ef
fi
ic
ci
it
ts
s
o
of
f
t
th
he
e
o
ol
ld
d
s
sy
ys
st
te
em
m
The automatic payload compensation facility for the single-axle air suspension did not per-
mit driver control. The driver could not actively control the system to make it easier to enter
and exit or load the vehicle.
Ride level was compensated via the rear axle only.
A Ad
dv
va
an
nt
ta
ag
ge
es
s
o
of
f
t
th
he
e
n
ne
ew
w
s
sy
ys
st
te
em
m
The new system allows the ride-height control system to be controlled actively by the dri-
ver.
The twin axle air suspension allows both axles to be lowered evenly and in parallel.
As a result, it is easier for the occupants to enter, exit, load and unload the vehicle.
On the E39, the load of the complete rear axle was born for the first time by air suspension
in combination with the optional ride height control system. The system was controlled
automatically under all operation conditions, and there was no possibility for driver inter-
vention on the X5, the rear axle previously had single axle air suspension only. The air sup-
ply unit and the control unit were adopted from the E39. The air springs were adapted to
the X5.
There is a standard version and a sports version.
The ride-height control system (EHC) was supplied as standard in combination with the
M62 engine and is available as an optional extra in combination with the M54 engine.
EHC2 is optional on both the M62 and M54 versions of the X5 and not available on the
4.6is X5.
Page 41 of 57
41
Level Control Systems
Single Axle Air Suspension (E65/E66)
Purpose of the System
The single axle air suspension system used on the the E65/E66 is a further enhancement
of the previous single axle air suspension system used on the the E39 and X5. The com-
ponents used are similar to the Single Axle EHC System on the E53. The E65/E66 Air sus-
pension consists of the following components:
Air Supply System (LVA)
Control Unit (EHC)
Two Air Springs
Two Ride Height Sensors
CC Display/Telltale Icon
Page 48 of 57
48
Level Control Systems
Principle of Operation
Control Mode Overview
Control Modes
Ongoing control operations are not affected by transitions from one mode to another.
However, in the case of load cutout OFF, control operations are always concluded in order
to safeguard system deactivation. The control unit then sets the Sleep Mode.
Sleep
The vehicle is in Sleep mode at the latest when it has been parked for longer than 16 min-
utes with a door, hood or rear lid/hatch being operated or the terminal status changing.
This is the initial state of the control system. No control operation is being performed in
Sleep mode.
The control system goes into Pre-mode when a wake-up signal is received by the control
unit.
E39/E53 EHC I
(Single Axle)E65/E66
(single Axle)E53 EHC II
(Dual Axle)
SleepXXX
Wake-upX
PostX
PreXXX
Terminal 15 OnX
NormalXXX
DriveXXX
KerbXXX
CurveXXX
LiftXXX
TwistX
TrailerX
Off-RoadX
AccessX
Page 50 of 57

50
Level Control Systems
Normal
The normal mode is the starting point for the vehicle’s normal operating state. It is obtained
by way of the engine running signal.
Ride level compensation, changing the vehicle’s ride height and filling the accumulator are
possible. The compressor starts up as required.
A narrower tolerance band than that in Pre-mode cab be used because the battery capac-
ity does not have to be protected. The fast filter is used with a narrow tolerance band of
+/- 10mm. In this way, ride level compensation takes place outside a narrow band of 10+/-
10mm. The faster filter allows the system to respond immediately to changes in ride level.
Evaluation and control are performed separately for each wheel.
When a speed signal is recognized, the control unit switches into Drive mode. When the
vehicle is stopped, the control unit remains in Drive mode. The system switches back into
Normal mode when a door or the boot (trunk) lid is also opened. If none of the doors or
the boot lid is opened, the vehicle cannot be loaded or unloaded.
This prevents a control operation happening when the vehicle (for example) is stopped at
traffic lights and the ride height is above the mean axle due to the pitching motion on the
rear axle.
Drive
The Drive mode is activated for E39/E53 single axle air suspension when a speed signal of
>4km/h is recognized. The Drive mode is recognized from >1km/h for the E65/E66 single
axle air suspension and for the E53 twin-axle air suspension system.
Low pass filters are used. In this way, only changes in ride height over a prolonged period
of time (1000 seconds) are corrected. These are merely the changes in ride height, caused
by vehicle compression and a reduction in vehicle mass due to fuel consumption. The high
pass (fast) filter is used during the control operation. The slow filters are recognized at the
end of the control operation. The slow filters are re-initialized at the end of the control oper-
ation. The markedly dynamic height signals caused by uneven road surfaces are filtered
out.