6D1-4 ENGINE ELECTRICAL (6VE1 3.5L)
Jump Starting Procedure
1. Set the vehicle parking brake.
If the vehicle is equipped with an automatic
transmission, place the selector level in the “PARK"
position.
If the vehicle is equipped with a manual
transmission, place the shift lever in the
“ NEUTRAL" position.
Turn “OFF" the ignition.
Turn “OFF" all lights and any other accessory
requiring electrical power.
2. Look at the built –in hydrometer.
If the indication area of the built –in hydrometer is
completely clear, do not try to jump start.
3.
Attach the end of one jumper cable to the positive
terminal of the booster battery.
Attach the other end of the same cable to the
positive terminal of the discharged battery.
Do not allow the vehicles to touch each other. This
will cause a ground connection, effectively
neutralizing the charging procedure.
Be sure that the booster battery has a 12 volt rating.
4. Attach one end of the remaining cable to the
negative terminal of the booster battery.
Attach the other end of the same cable to a solid
engine ground (such as the air conditioning
compressor bracket or the generator mounting
bracket) of the vehicle with the discharged battery.
The ground connection must be at least 450 mm
(18 in.) from the battery of the vehicle whose battery
is being charged.
WARNING: NEVER ATTACH THE END OF THE
JUMPER CABLE DIRECTLY TO THE NEGATIVE
TERMINAL OF THE DEAD BATTERY.
5. Start the engine of the vehicle with the good battery.
Make sure that all unnecessary electrical
accessories have been turned “OFF".
6. Start the engine of the vehicle with the dead battery.
7. To remove the jumper cables, follow the above directions in reverse order.
Be sure to first disconnect the negative cable from
the vehicle with the discharged battery.
Battery Removal
P1010001
1. Remove negative cable.
2. Remove positive cable (2).
3. Remove retainer screw and rods.
4. Remove retainer.
5. Remove battery.
Battery Installation
1. Install battery.
2. Install retainer.
3. Install retainer screw and rods.
NOTE: Make sure that the rod is hooked on the body
side.
4. Install positive cable.
5. Install negative cable.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-5
ABBREVIATION CHARTS
Abbreviations Appellation
A/C Air conditioner
A/T Automatic transmission
ACC Accessory
BLK Black
BLU Blue
BRN Brown
CAN Controller Area Network
CEL Check engine lamp
CKP Crankshaft position
CMP Camshaft position
DLC Data link connector
DTC Diagnosis trouble code
DVM Digital voltage meter
ECM Engine control module
ECT Engine coolant temperature
EEPROM Electrically erasable & programmable read only memory
EGR Exhaust gas recalculation
GND Ground
GRY Gray
HO2S Heated Oxygen Sensor
IAT Intake air temperature
IAC Idle air control
IG Ignition
M/T Manual transmission
MAF Mass air flow
MIL Malfunction indicator lamp
OBD On-board diagnostic
ORN Orange
PNK Pink
PROM Programmable read only memory
RED Red
SW Switch
TPS Throttle position sensor
TCM Transmission control module
VCC Voltage Constant Control
VIO Violet
VSS Vehicle speed sensor
WHT White
WOT Wide open throttle
YEL Yellow
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-51
GENERAL DESCRIPTION FOR ECM AND
SENSORS
Engine Control Module (ECM)
1 2
(1) A Port
(2) B Port
The engine control module (ECM) is located on the
common chamber. The ECM controls the following.
Fuel metering system
Ignition timing
On-board diagnostics for powertrain functions.
The ECM constantly observes the information from
various sensors. The ECM controls the systems tha
t
affect vehicle performance. And it performs the
diagnostic function of the system.
The function can recognize operational problems, and
warn to the driver through the check engine lamp, and
store diagnostic trouble code (DTC). DTCs identify the
problem areas to aid the technician in marking repairs.
The input / output devices in the ECM include analog to
digital converts, signal buffers, counters and drivers.
The ECM controls most components with electronic
switches which complete a ground circuit when turned
on.
Inputs (Operating condition read):
Battery voltage
Electrical ignition
Exhaust oxygen content
Mass air flow
Intake air temperature
Engine coolant temperature
Crankshaft position
Camshaft position
Throttle position
Vehicle speed
Power steering pressure
Air conditioning request on or off
EGR valve position
Outputs (Systems controlled):
Ignition control
Fuel control
Idle air control
Fuel pump
EVAP canister purge
Air conditioning
Diagnostics functions
The vehicle with automatic transmission, the
interchange of data between the engine control module
(ECM) and the transmission control module (TCM) is
performed via a CAN-bus system.
The following signals are exchanged via the CAN-bus:
ECM to TCM:
ECM CAN signal status
Engine torque
Coolant temperature
Throttle position
Engine speed
A/C status
CAN valid counter
TCM to ECM:
Ignition timing retard request
Garage shift status
CAN valid counter
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-55
Vehicle Speed Sensor (VSS)
The VSS is a magnet rotated by the transmission output
shaft. The VSS uses a hall element. It interacts with the
magnetic field treated by the rotating magnet. It outputs
pulse signal. The 12 volts operating supply from the
meter fuse.
Heated Oxygen (O2) Sensor
1
(1) Bank 1 Heated Oxygen Sensor (RH)
1
(1) Bank 2 Heated Oxygen Sensor (LH)
Each oxygen sensor consists of a 4-wire low
temperature activated zirconia oxygen analyzer elemen
t
with heater for operating temperature of 315C, and
there is one mounted on each exhaust pipe.
A constant 450millivolt is supplied by the ECM between
the two supply terminals, and oxygen concentration in
the exhaust gas is reported to the ECM as returned
signal voltage.
The oxygen present in the exhaust gas reacts with the
sensor to produce a voltage output. This voltage should
constantly fluctuate from approximately 100mV to
1000mV and the ECM calculates the pulse width
commanded for the injectors to produce the prope
r
combustion chamber mixture.
Low oxygen sensor output voltage is a lean mixture
which will result in a rich commanded to compensate.
High oxygen sensor output voltage is a rich mixture
which result in a lean commanded to compensate.
When the engine is first started the system is in "Open
Loop" operation. In "Open Loop", the ECM ignores the
signal from the oxygen sensors. When various
conditions (ECT, time from start, engine speed &
oxygen sensor output) are met, the system enters
"Closed Loop" operation. In "Closed Loop", the ECM
calculates the air fuel ratio based on the signal from the
oxygen sensors.
Heated oxygen sensors are used to minimize the
amount of time required for closed loop fuel control to
begin operation and allow accurate catalyst monitoring.
The oxygen sensor heater greatly decreases the
amount of time required for fuel control sensors to
become active.
Oxygen sensor heaters are required by catalyst monito
r
and sensors to maintain a sufficiently high temperature
which allows accurate exhaust oxygen content readings
further away from the engine.
6E-66 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Does it rely on some mechanical/vacuum
device to operate?
Physical:
Where are the circuit components (componen
t
locators and wire harness routing diagrams):
Are there areas where wires could be
chafed or pinched (brackets or frames)?
Are there areas subjected to extreme
temperatures?
Are there areas subjected to vibration or
movement (engine, transmission or
suspension)?
Are there areas exposed to moisture, road
salt or other corrosives (battery acid, oil o
r
other fluids)?
Are there common mounting areas with
other systems/components?
Have previous repairs been performed to
wiring, connectors, components or mounting
areas (causing pinched wires between panels
and drivetrain or suspension components
without causing and immediate problem)?
Does the vehicle have aftermarket or dealer-
installed equipment (radios, telephone, etc.)
Step 2: Isolate the problem
At this point, you should have a good idea of what could
cause the present condition, as well as could not cause
the condition. Actions to take include the following:
Divide (and separate, where possible) the system
or circuit into smaller sections
Confine the problem to a smaller area of the
vehicle (start with main harness connections while
removing panels and trim as necessary in order to
eliminate large vehicle sections from furthe
r
investigation)
For two or more circuits that do not share a
common power or ground, concentrate on areas
where harnesses are routed together o
r
connectors are shared (refer to the following hints)
Hints
Though the symptoms may vary, basic electrical failures
are generally caused by:
Loose connections:
Open/high resistance in terminals, splices,
connectors or grounds
Incorrect connector/harness routing (usually in
new vehicles or after a repair has been made):
Open/high resistance in terminals, splices,
connectors of grounds
Corrosion and wire damage:
Open/high resistance in terminals, splices,
connectors of grounds
Component failure:
Opens/short and high resistance in relays,
modules, switches or loads
Aftermarket equipment affecting normal operation
of other systems You may isolate circuits by:
Unplugging connectors or removing a fuse to
separate one part of the circuit from another part
Operating shared circuits and eliminating those
that function normally from the suspect circuit
If only one component fails to operate, begin
testing at the component
If a number of components do no operate, begin
tests at the area of commonality (such as powe
r
sources, ground circuits, switches or majo
r
connectors)
What resources you should use
Whenever appropriate, you should use the following
resources to assist in the diagnostic process:
Service manual
Technical equipment (for data analysis)
Experience
Technical Assistance
Circuit testing tools
5d. Intermittent Diagnosis
By definition, an intermittent problem is one that does
not occur continuously and will occur when certain
conditions are met. All these conditions, however, may
not be obvious or currently known. Generally,
intermittents are caused by:
Faulty electrical connections and wiring
Malfunctioning components (such as sticking
relays, solenoids, etc.)
EMI/RFI (Electromagnetic/radio frequency
interference)
Aftermarket equipment
Intermittent diagnosis requires careful analysis of
suspected systems to help prevent replacing good
parts. This may involve using creativity and ingenuity to
interpret customer complaints and simulating all
external and internal system conditions to duplicate the
problem.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-71
Basic Knowledge of Tools Required
Lack of basic knowledge of this powertrain when
performing diagnostic procedures could result in an
incorrect diagnosis or damage to powertrain
components. Do not attempt to diagnose a powertrain
problem without this basic knowledge.
A basic understanding of hand tools is necessary to
effectively use this section of the Service Manual.
Serial Data Communications
Class II Serial Data Communications
This vehicle utilizes the “Class II" communication
system. Each bit of information can have one of two
lengths: long or short. This allows vehicle wiring to be
reduced by transmitting and receiving multiple signals
over a single wire. The messages carried on Class II
data streams are also prioritized. If two messages
attempt to establish communications on the data line at
the same time, only the message with higher priority will
continue. The device with the lower priority message
must wait. The most significant result of this regulation
is that it provides Tech 2 manufacturers with the
capability to access data from any make or model
vehicle that is sold.
The data displayed on the other Tech 2 will appear the
same, with some exceptions. Some scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual
value. For more information on this system of coding,
refer to Decimal/Binary/Hexadecimal Conversions.On
this vehicle the Tech 2 displays the actual values fo
r
vehicle parameters. It will not be necessary to perform
any conversions from coded values to actual values.
On-Board Diagnostic (OBD)
On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which
is a pass or fail reported to the diagnostic executive.
When a diagnostic test reports a pass result, the
diagnostic executive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The diagnostic test has passed during the curren
t
ignition cycle.
The fault identified by the diagnostic test is no
t
currently active.
When a diagnostic test reports a fail result, the
diagnostic executive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.
Remember, a fuel trim DTC may be triggered by a list o
f
vehicle faults. Make use of all information available
(other DTCs stored, rich or lean condition, etc.) when
diagnosing a fuel trim fault.
Comprehensive Component Monitor
Diagnostic Operation
Input Components:
Input components are monitored for circuit continuity
and out-of-range values. This includes rationality
checking. Rationality checking refers to indicating a
fault when the signal from a sensor does not seem
reasonable, i.e.throttle position sensor that indicates
high throttle position at low engine loads. Inpu
t
components may include, but are not limited to the
following sensors:
Vehicle Speed Sensor (VSS)
Inlet Air Temperature (IAT) Sensor
Crankshaft Position (CKP) Sensor
Throttle Position Sensor (TPS)
Engine Coolant Temperature (ECT) Sensor
Camshaft Position (CMP) Sensor
Mass Air Flow (MAF) Sensor
In addition to the circuit continuity and rationality check
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel
control.
Output Components:
Output components are diagnosed for proper response
to control module commands. Components where
functional monitoring is not feasible will be monitored fo
r
circuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are no
t
limited to, the following circuit:
Idle Air Control (IAC) Valve
Control module controlled EVAP Canister Purge
Valve
Electronic Transmission controls
A/C relays
VSS output
MIL control
Refer to ECM and Sensors in General Descriptions.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-75
TECH 2 CONNECTION
Tech 2 scan tool is used to electrically diagnose the
automatic transmission system and to check the
system. The Tech 2 enhances the diagnosis efficiency
though all the troubleshooting can be done without the
Te c h 2 .
1. Configuration of Tech 2
Tech 2 scan tool kit (No. 7000086), Tech 2
scan tool (No. 7000057) and DLC cable (No.
3000095).
SAE 16/19 adapter (No. 3000098) (3), RS232
loop back connector (No. 3000112) (2) and
PCMCIA card (No. 3000117) (1).
2. Tech 2 Connection
Check the key switch is turn OFF.
Insert the PCMCIA card (1) into the Tech 2 (5).
Connect the SAE 16/19 adapter (3) to the DLC
Turn the key switch of the vehicle ON and press
the “PWR” key of the Tech 2.
Check the display of the Tech 2.
NOTE: Be sure to check that the power is not
supplied to the Tech 2 when attaching or removing
the PCMCIA card.
Diagnosis with TECH 2
If No Codes are Set
Refer to F1: Data Display and identify the electrical
faults that are not indicated by trouble code.
Refer to "SYMPTOM DIAGNOSIS".
If Codes are Set
1. Record all trouble codes displayed by Tech 2 and
check id the codes are intermittent.
2. Clear the codes.
3. Drive the vehicle for a test to reproduce the faulty
status.
4. Check trouble codes again using the Tech 2.
5. If no codes is displayed by test driving, the fault is
intermittent. In this case, refer to "DIAGNOSIS
AIDS".
6. If a code is present, refer to DTC Chartfo
r
diagnosis.
7. Check trouble codes again using the Tech 2.
6E-92 3.5L ENGINE DRIVEABILITY AND EMISSIONS
2.Demand of Data
1.
Connect Tech-2 to the vehicle. When activated b
y
turning on the power of Tech-2, push the "Enter"
switch.
2.
Turn on the ignition switch (without starting the
engine)
3.
In the main menu of Tech 2, push "F1: Service
Programming System (SPS)".
4.
Push "F0: Request Info" of Tech-2.
5.
Where vehicle data has been already saved in
Tech-2, the existing data come on display. In this
instance, as Tech-2 starts asking whether to keep
the data or to continue obtaining anew data from
the control unit, choose either of them.
6.
If you select “continue”, you have to select “Model
Year”, “Vehicle Type”.
7.
After that. then push button and turn Ignition switch
tuned on, off, on following Tech-2 display. Tech-2
will read information from controller after this
procedure.
8.
During obtaining information, Tech-2 is receiving
information from the control unit ECM and TCM
(A/T only) at the same time. With VIN not being
programmed into the new control unit at the time
of shipment, "obtaining information" is not
complete (because the vehicle model, engine
model and model year are specified from VIN). Fo
r
the procedure get additional information on
vehicles, instruction will be provided in dialog form,
when TIS2000 is in operation.
9.
Following instructions by Tech-2, push the "Exit"
switch of Tech-2, turn off the ignition of the vehicle
and turn off the power of Tech-2, thereby removing
from the vehicle.
3.Data Exchange
1.
Connect Tech-2 to P/C, turn on the power and
click the "Next" button of P/C.
2. Check VIN of the vehicle and choose "Next".
3. Select “System Type” for required control unit.
Engine (Programming for ECM or PCM)
Transmission (Programming for TCM)
4.
When a lack of data is asked from among the
following menu, enter accordingly.
Select following Menu
Model Year
Model
Engine type
Transmission type
Destination code (vehicles for general export)*1
Immobilizer
Etc.
* 1: How to read the destination code
"Destination code can be read from service ID Plate
affixed on vehicles, while on service ID plate the
destination code is described at the right-hand edge o
f
Body Type line. In the figure, the destination code can
be read as "RR3" (Australia).