ENGINE FUEL (6VE1 3.5L) 6C-3
Fuel Metering
The Engine Control Module (ECM) is in complete
control of this fuel delivery system during normal driving
conditions.
The intake manifold function, like that of a diesel, is
used only to let air into the engine. The fuel is injected
by separate injectors that are mounted over the intake
manifold.
The Barometric Pressure (BARO) sensor measures the
changes in the barometric pressure which result from
engine load and speed changes, which the BARO
sensor converts to a voltage output.
This sensor generates the voltage to change
corresponding to the flow of the air drawn into the
engine.
The changing voltage is transformed into an electric
signal and provided to the ECM.
With receipt of the signals sent from the BARO sensor,
Intake Air Temperature sensor and others, the ECM
determines an appropriate fuel injection pulse width
feeding such information to the fuel injector valves to
effect an appropriate air/fuel ratio.
The Multiport Fuel Injection system utilizes an injection
system where the injectors turn on at every crankshaf
t
revolution. The ECM controls the injector on time so
that the correct amount of fuel is metered depending on
driving conditions.
Two interchangeable “O" rings are used on the injecto
r
that must be replaced when the injectors are removed.
The fuel rail is attached to the top of the intake manifold
and supplies fuel to all the injectors.
Fuel is recirculated through the rail continually while the
engine is running. This removes air and vapors from the
fuel as well as keeping the fuel cool during hot weathe
r
operation.
The fuel pressure control valve that is mounted on the
fuel rail maintains a pressure differential across the
injectors under all operating conditions. It is
accomplished by controlling the amount of fuel that is
recirculated back to the fuel tank based on engine
demand.
See Section “Driveability and Emission" for more
information and diagnosis.
6D2-2 IGNITION SYSTEM (6VE1 3.5L)
General Description
Ignition is done by the electronic ignition (El) that directly
fires the spark plugs from ignition coils through spark
plug wires without using a distributor. A pair of ignition
coils for the cylinders having different phases by 360
(No.1 and No.4, No.2 and No.5, No.3 and No.6) are
fired simultaneously.
Since the cylinder on exhaust stroke requires less
energy to fire its ignition plug, energy from the ignition
coils can be utilized to fire the mating cylinder on
compression stroke. After additional 360rotation,
respective cylinder strokes are reversed.
The EI consists of six ignition coils, crankshaft position
sensor, engine control module (ECM) and othe
r
components.
The ignition coils are connected with the ECM.
The ECM turns on/off the primary circuit of ignition coils,
and also it controls the ignition timing.
A notch in the timing disc on the crankshaft activates
the crankshaft position sensor which then sends
information such as firing order and starting timing o
f
each ignition coil to the ECM.
Further, the El employs ignition control (IC) to control
similar to a distributor system.
Diagnosis
Refer to Section Drivability and Emissions for the
diagnosis to electronic ignition system (El system).
STARTING AND CHARGING SYSTEM (6VE1 3.5L) 6D3-21
Stator Coil
1. Measure resistance between respective phases.
2. Measure insulation resistance between stator coil
and core with a mega–ohmmeter.
If less than standard, replace the coil.
066RS018
Brush
Measure the brush length.
If more than limit, replace the brush.
Standard: 10.mm (0.4134 in)
Limit: 8.4.mm (0.3307 in)
066RS019
Rectifier Assembly
Check for continuity across “P" and “E" in the 100W
range of multimeter.
066RW002
Change polarity, and make sure that there is continuity
in one direction, and not in the reverse direction. In case
of continuity in both directions, replace the rectifie
r
assembly.
IC Regulator Assembly
Check for continuity across “B" and “F" in the 100W
range of multimeter.
066RS021
Change polarity, and make sure that there is continuity
in one direction, and not in the reverse direction. In case
of continuity in both directions, replace the IC regulato
r
assembly.
6E-70 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Fuel Quality
Fuel quality is not a new issue for the automotive
industry, but its potential for turning on the MIL (“Check
Engine" lamp) with OBD systems is new.
Fuel additives such as “dry gas" and “octane
enhancers" may affect the performance of the fuel. The
Reed Vapor Pressure of the fuel can also create
problems in the fuel system, especially during the spring
and fall months when severe ambient temperature
swings occur. A high Reed Vapor Pressure could sho
w
up as a Fuel Trim DTC due to excessive canister
loading. High vapor pressures generated in the fuel
tank can also affect the Evaporative Emission
diagnostic as well.
Using fuel with the wrong octane rating for your vehicle
may cause driveability problems. Many of the majo
r
fuel companies advertise that using “premium" gasoline
will improve the performance of your vehicle. Mos
t
premium fuels use alcohol to increase the octane rating
of the fuel. Although alcohol-enhanced fuels may raise
the octane rating, the fuel's ability to turn into vapor in
cold temperatures deteriorates. This may affect the
starting ability and cold driveability of the engine.
Low fuel levels can lead to fuel starvation, lean engine
operation, and eventually engine misfire.
Non-OEM Parts
All of the OBD diagnostics have been calibrated to run
with OEM parts.
Aftermarket electronics, such as cellular phones,
stereos, and anti-theft devices, may radiate EMI into the
control system if they are improperly installed. This may
cause a false sensor reading and turn on the MIL
(“Check Engine" lamp).
Environment
Temporary environmental conditions, such as localized
flooding, will have an effect on the vehicle ignition
system. If the ignition system is rain-soaked, it can
temporarily cause engine misfire and turn on the MIL
(“Check Engine" lamp).
Vehicle Marshaling
The transportation of new vehicles from the assembly
plant to the dealership can involve as many as 60 key
cycles within 5Km miles of driving. This type o
f
operation contributes to the fuel fouling of the spark
plugs and will turn on the MIL (“Check Engine" lamp).
Poor Vehicle Maintenance
The sensitivity of OBD diagnostics will cause the MIL
(“Check Engine" lamp) to turn on if the vehicle is no
t
maintained properly. Restricted air filters, fuel filters,
and crankcase deposits due to lack of oil changes o
r
improper oil viscosity can trigger actual vehicle faults
that were not previously monitored prior to OBD. Poo
r
vehicle maintenance can not be classified as a
“non-vehicle fault", but with the sensitivity of OBD
diagnostics, vehicle maintenance schedules must be
more closely followed.
Severe Vibration
The Misfire diagnostic measures small changes in the
rotational speed of the crankshaft. Severe driveline
vibrations in the vehicle, such as caused by an
excessive amount of mud on the wheels, can have the
same effect on crankshaft speed as misfire.
Related System Faults
Many of the OBD system diagnostics will not run if the
ECM detects a fault on a related system or component.
One example would be that if the ECM detected a
Misfire fault, the diagnostics on the catalytic converte
r
would be suspended until Misfire fault was repaired. If
the Misfire fault was severe enough, the catalytic
converter could be damaged due to overheating and
would never set a Catalyst DTC until the Misfire faul
t
was repaired and the Catalyst diagnostic was allowed to
run to completion. If this happens, the customer may
have to make two trips to the dealership in order to
repair the vehicle.
Maintenance Schedule
Refer to the Maintenance Schedule.
Visual/Physical Engine Compartment
Inspection
Perform a careful visual and physical engine
compartment inspection when performing any
diagnostic procedure or diagnosing the cause of an
emission test failure. This can often lead to repairing a
problem without further steps. Use the following
guidelines when performing a visual/physical inspection:
Inspect all vacuum hoses for punches, cuts,
disconnects, and correct routing.
Inspect hoses that are difficult to see behind othe
r
components.
Inspect all wires in the engine compartment fo
r
proper connections, burned or chafed spots, pinched
wires, contact with sharp edges or contact with ho
t
exhaust manifolds or pipes.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-71
Basic Knowledge of Tools Required
Lack of basic knowledge of this powertrain when
performing diagnostic procedures could result in an
incorrect diagnosis or damage to powertrain
components. Do not attempt to diagnose a powertrain
problem without this basic knowledge.
A basic understanding of hand tools is necessary to
effectively use this section of the Service Manual.
Serial Data Communications
Class II Serial Data Communications
This vehicle utilizes the “Class II" communication
system. Each bit of information can have one of two
lengths: long or short. This allows vehicle wiring to be
reduced by transmitting and receiving multiple signals
over a single wire. The messages carried on Class II
data streams are also prioritized. If two messages
attempt to establish communications on the data line at
the same time, only the message with higher priority will
continue. The device with the lower priority message
must wait. The most significant result of this regulation
is that it provides Tech 2 manufacturers with the
capability to access data from any make or model
vehicle that is sold.
The data displayed on the other Tech 2 will appear the
same, with some exceptions. Some scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual
value. For more information on this system of coding,
refer to Decimal/Binary/Hexadecimal Conversions.On
this vehicle the Tech 2 displays the actual values fo
r
vehicle parameters. It will not be necessary to perform
any conversions from coded values to actual values.
On-Board Diagnostic (OBD)
On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which
is a pass or fail reported to the diagnostic executive.
When a diagnostic test reports a pass result, the
diagnostic executive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The diagnostic test has passed during the curren
t
ignition cycle.
The fault identified by the diagnostic test is no
t
currently active.
When a diagnostic test reports a fail result, the
diagnostic executive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.
Remember, a fuel trim DTC may be triggered by a list o
f
vehicle faults. Make use of all information available
(other DTCs stored, rich or lean condition, etc.) when
diagnosing a fuel trim fault.
Comprehensive Component Monitor
Diagnostic Operation
Input Components:
Input components are monitored for circuit continuity
and out-of-range values. This includes rationality
checking. Rationality checking refers to indicating a
fault when the signal from a sensor does not seem
reasonable, i.e.throttle position sensor that indicates
high throttle position at low engine loads. Inpu
t
components may include, but are not limited to the
following sensors:
Vehicle Speed Sensor (VSS)
Inlet Air Temperature (IAT) Sensor
Crankshaft Position (CKP) Sensor
Throttle Position Sensor (TPS)
Engine Coolant Temperature (ECT) Sensor
Camshaft Position (CMP) Sensor
Mass Air Flow (MAF) Sensor
In addition to the circuit continuity and rationality check
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel
control.
Output Components:
Output components are diagnosed for proper response
to control module commands. Components where
functional monitoring is not feasible will be monitored fo
r
circuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are no
t
limited to, the following circuit:
Idle Air Control (IAC) Valve
Control module controlled EVAP Canister Purge
Valve
Electronic Transmission controls
A/C relays
VSS output
MIL control
Refer to ECM and Sensors in General Descriptions.
6E-72 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Passive and Active Diagnostic Tests
A passive test is a diagnostic test which simply monitors
a vehicle system or component. Conversely, an active
test, actually takes some sort of action when performing
diagnostic functions, often in response to a failed
passive test.
Intrusive Diagnostic Tests
This is any on-board test run by the Diagnostic
Management System which may have an effect on
vehicle performance or emission levels.
Warm-Up Cycle
A warm-up cycle means that engine at temperature
must reach a minimum of 70
C (160F) andrise at
least 22
C (40F) over the course of a trip.
The Diagnostic Executive
The Diagnostic Executive is a unique segment of
software which is designed to coordinate and prioritize
the diagnostic procedures as well as define the protocol
for recording and displaying their results. The main
responsibilities of the Diagnostic Executive are listed as
follows:
Commanding the MIL (“Check Engine" lamp) on and
off
DTC logging and clearing
Freeze Frame data for the first emission related DTC
recorded
Current status information on each diagnostic
The Diagnostic Executive records DTCs and turns on
the MIL when emission-related faults occur. It can also
turn off the MIL if the conditions cease which caused
the DTC to set.
Diagnostic Information
The diagnostic charts and functional checks are
designed to locate a faulty circuit or component through
a process of logical decisions. The charts are prepared
with the requirement that the vehicle functioned
correctly at the time of assembly and that there are no
t
multiple faults present.
There is a continuous self-diagnosis on certain control
functions. This diagnostic capability is complemented
by the diagnostic procedures contained in this manual.
The language of communicating the source of the
malfunction is a system of diagnostic trouble codes.
When a malfunction is detected by the control module,
a diagnostic trouble code is set and the MIL (“Check
Engine" lamp) is illuminated.
Check Engine Lamp (MIL)
The Check Engine Lamp (MIL) looks the same as the
MIL you are already familiar with (“Check Engine"
lamp).
Basically, the MIL is turned on when the ECM detects a
DTC that will impact the vehicle emissions.
The MIL is under the control of the Diagnostic
Executive. The MIL will be turned on if an
emissions-related diagnostic test indicates a
malfunction has occurred. It will stay on until the
system or component passes the same test, for three
consecutive trips, with no emissionsrelated faults.
Extinguishing the MIL
When the MIL is on, the Diagnostic Executive will turn
off the MIL after three consecutive trips that a “tes
t
passed" has been reported for the diagnostic test tha
t
originally caused the MIL to illuminate.
Although the MIL has been turned off, the DTC will
remain in the ECM memory (both Freeze Frame and
Failure Records) until forty(40) warm-up cycles after no
faults have been completed.
If the MIL was set by either a fuel trim or misfire-related
DTC, additional requirements must be met. In addition
to the requirements stated in the previous paragraph,
these requirements are as follows:
The diagnostic tests that are passed must occur with
375 RPM of the RPM data stored at the time the las
t
test failed.
Plus or minus ten (10) percent of the engine load tha
t
was stored at the time the last failed.
Similar engine temperature conditions (warmed up o
r
warming up ) as those stored at the time the last tes
t
failed.
Meeting these requirements ensures that the fault which
turned on the MIL has been corrected.
The MIL (“Check Engine" lamp) is on the instrumen
t
panel and has the following functions:
It informs the driver that a fault that affects vehicle
emission levels has occurred and that the vehicle
should be taken for service as soon as possible.
As a bulb and system check, the MIL will come “ON"
with the key “ON" and the engine not running. When
the engine is started, the MIL will turn “OFF."
When the MIL remains “ON" while the engine is
running, or when a malfunction is suspected due to a
driveability or emissions problem, a Powertrain
On-Board Diagnostic (OBD) System Check must be
performed. The procedures for these checks are
given in On-Board Diagnostic (OBD) System Check.
These checks will expose faults which may not be
detected if other diagnostics are performed first.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-73
Intermittent Check Engine Lamp
In the case of an “intermittent" fault, the MIL (“Check
Engine" lamp) may illuminate and then (after three trips)
go “OFF". However, the corresponding diagnostic
trouble code will be stored in the memory. When
unexpected diagnostic trouble codes appear, check fo
r
an intermittent malfunction.
A diagnostic trouble code may reset. Consult the
“Diagnostic Aids" associated with the diagnostic trouble
code. A physical inspection of the applicable sub–
system most often will resolve the problem.
Data Link Connector (DLC)
The provision for communication with the control
module is the Data Link Connector (DLC). The DLC is
used to connect to a Tech 2. Some common uses o
f
the Tech 2 are listed below:
Identifying stored Diagnostic Trouble Codes (DTCs).
Clearing DTCs.
Performing out put control tests.
Reading serial data.
060RW046
Verifying Vehicle Repair
Verification of vehicle repair will be more
comprehensive for vehicles with OBD system
diagnostic. Following a repair, the technician should
perform the following steps:
1. Review and record the Fail Records and/or Freeze
Frame data for the DTC which has been diagnosed
(Freeze Frame data will only be stored for an A or B
type diagnostic and only if the MIL has been
requested).
2. Clear DTC(s).
3. Operate the vehicle within conditions noted in the
Fail Records and/or Freeze Frame data.
4. Monitor the DTC status information for the specific
DTC which has been diagnosed until the diagnostic
test associated with that DTC runs.
Following these steps are very important in verifyin
g
repairs on OBD systems. Failure to follow these steps
could result in unnecessary repairs.
Reading Flash Diagnostic Trouble Codes
The provision for communicating with the Engine
Control Module (ECM) is the Data Link Connecto
r
(DLC). The DLC is located behind the lower front
instrument panel. It is used in the assembly plant to
receive information in checking that the engine is
operating properly before it leaves the plant.
The diagnostic trouble code(s) (DTCs) stored in the
ECM's memory can be read either through a hand-held
diagnostic scanner plugged into the DLC or by counting
the number of flashes of the Check Engine Lamp (MIL)
when the diagnostic test terminal of the DLC is
grounded. The DLC terminal “6" (diagnostic request) is
pulled “Low" (grounded) by jumpering to DLC terminal
“4", which is a ground wire.
This will signal the ECM that you want to “flash" DTC(s),
if any are present. Once terminals “4" and “6" have
been connected, the ignition switch must be moved to
the “ON" position, with the engine not running. At this
point, the “Check Engine" MIL should flash DTC12
three times consecutively.
This would be the following flash, sequence: "flash,
pause, flash?flash, long pause, flash, pause,
flash?flash, long pause, flash, pause, flash?flash". DTC
12 indicates that the ECM's diagnostic system is
operating. If DTC 12 is not indicated, a problem is
present within the diagnostic system itself, and should
be addressed by consulting the appropriate diagnostic
chart in DRIVEABILITY AND EMISSIONS.
Following the output of DTC 12, the “Check Engine" MIL
will indicate a DTC three times if a DTC is present, or i
t
will simply continue to output DTC12. If more than one
DTC three has been stored in the ECM's memory, the
DTC(s) will be output from the lowest to the highest,
with each DTC being displayed three times.
Reading Diagnostic Trouble Codes Using a
TECH 2
The procedure for reading diagnostic trouble code(s) is
to used a diagnostic Tech 2. When reading DTC(s),
follow instructions supplied by Tech 2 manufacturer.
For the 1998 model year, Isuzu dealer service
departments will continue to use Tech 2.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-79
TYPICAL SCAN DATA & DEFINITIONS (ENGINE DATA)
Use the typical values table only after the On-Board Diagnostic System check has been completed, no DTC(s) were noted, and you have determined that the On-Board
Diagnostic are functioning properly.
Tech2 values from a properly running engine may be used for comparison with the engine you are diagnosing.
Condition : Vehicle stopping, engine running, air conditioning off & after warm-up (Coolant temperature approximately 80C)
Tech 2
Parameter
Units Idle 2000rpm Definitions
1 Ignition Voltage V 10.0 14.5 10.0 14.5 This displays the system voltage measured by the ECM at ignition feed.
2 Engine Speed rpm 710 860 1950 2050 The actual engine speed is measured by ECM from the CKP sensor 58X signal.
3 Desired Idle
Speed rpm 750 770 750 770 The desired engine idle speed that the ECM commanding.
The ECM compensates for various engine loads.
4 Engine Coolant
Temperature C or F 80 90 () 80 90 () The ECT is measured by ECM from ECT sensor output voltage.
When the engine is normally warm upped, this data displays approximately 80 °C or
more.
5 Start Up ECT
(Engine Coolant
Temperature) C or F Depends on ECT
at start-up
Depends on ECT
at start-up
Start-up ECT is measured by ECM from ECT sensor output voltage when engine is
started.
6 Intake Air
Temperature
C or F Depends on
ambient temp.
Depends on
ambient temp.
The IAT is measured by ECM from IAT sensor output voltage.
This data is changing by intake air temperature.
7 Throttle Position % 0 4 6 Throttle position operating angle is measured by the ECM from throttle position
output voltage.
This should display 0% at idle and 99 100% at full throttle.
8 Throttle Position
Sensor V 0.4 0.7 0.6 0.8 The TPS output voltage is displayed.
This data is changing by accelerator operating angle.
9 Mass Air Flow g/s 5.0 8.0 13.0 16.0 This displays intake air amount.
The mass air flow is measured by ECM from the MAF sensor output voltage.
10 Air Fuel Ratio 14.7:1 14.7:1 This displays the ECM commanded value.
In closed loop, this should normally be displayed around 14.2:1 14.7:1.
11 Idle Air Control Steps 10 20 20 30 This displays the ECM commanded position of the idle air control valve pintle.
A larger number means that more air is being commanded through the idle air
passage.
12 EGR Valve V 0.00 0.00 0.10 The EGR position sensor output voltage is displayed.
This data is changing by EGR valve solenoid operating position.
13 Desired EGR
Opening V 0.00 0.05 1.10 The ECM commanded EGR position sensor voltage is displayed.
According to the current position, ECM changes EGR valve solenoid operating
position to meet the desired position.
14 EGR Valve On
Duty % 0 32 – 38 This displays the duty signal from the ECM to control the EGR valve.
15 Engine Load % 2 7 8 15 This displays is calculated by the ECM form engine speed and MAF sensor reading.
Engine load should increase with an increase in engine speed or air flow amount.
16 B1 Fuel System
Status Open Loop/ Close
Loop Close Loop Close Loop
17 B2 Fuel System
Status Open Loop/ Close
Loop Close Loop Close Loop
When the engine is first started the system is in "Open Loop" operation.
In "Open Loop", the ECM ignores the signal from the oxygen sensors.
When various conditions (ECT, time from start, engine speed & oxygen sensor
output) are met, the system enters "Closed Loop" operation.
In "Closed Loop", the ECM calculates the air fuel ratio based on the signal from the
oxygen sensors.
18 Fuel Trim
Learned (Bank 1) Yes/No Yes Yes
19 Fuel Trim
Learned (Bank 2) Yes/No Yes Yes
When conditions are appropriate for enabling long term fuel trim corrections, fuel trim
learn will display "Yes".
This indicates that the long term fuel trim is responding to the short term fuel trim.
If the fuel trim lean displays "No", then long term fuel trim will not respond to changes
in short term fuel trim.
20 Injection Pulse
Bank 1 ms 2.0 4.0 2.0 4.0
21 Injection Pulse
Bank 2 ms 2.0 4.0 2.0 4.0
This displays the amount of time the ECM is commanding each injector On during
each engine cycle.
A longer injector pulse width will cause more fuel to be delivered. Injector pulse width
should increase with increased engine load.
22 Spark Advance °CA 10 15 35 42 This displays the amount of spark advance being commanded by the ECM.