OPERATION
The cruise indicator gives an indication to the vehi-
cle operator when the speed control system is turned
On, regardless of whether the speed control is
engaged. This indicator is controlled by a transistor
on the instrument cluster electronic circuit board
based upon the cluster programming and electronic
messages received by the cluster from the Powertrain
Control Module (PCM) over the Programmable Com-
munications Interface (PCI) data bus. The cruise
indicator Light Emitting Diode (LED) is completely
controlled by the instrument cluster logic circuit, and
that logic will only allow this indicator to operate
when the instrument cluster receives a battery cur-
rent input on the fused ignition switch output (run-
start) circuit. Therefore, the LED will always be off
when the ignition switch is in any position except On
or Start. The LED only illuminates when it is pro-
vided a path to ground by the instrument cluster
transistor. The instrument cluster will turn on the
cruise indicator for the following reasons:
²Cruise Lamp-On Message- Each time the
cluster receives a cruise lamp-on message from the
PCM indicating the speed control system has been
turned On, the cruise indicator is illuminated. The
indicator remains illuminated until the cluster
receives a cruise lamp-off message from the PCM or
until the ignition switch is turned to the Off position,
whichever occurs first.
²Actuator Test- Each time the cluster is put
through the actuator test, the cruise indicator will be
turned on, then off again during the bulb check por-
tion of the test in order to confirm the functionality
of the LED and the cluster control circuitry.
The PCM continually monitors the speed control
switches to determine the proper outputs to the
speed control servo. The PCM then sends the proper
cruise indicator lamp-on and lamp-off messages to
the instrument cluster. For further diagnosis of the
cruise indicator or the instrument cluster circuitry
that controls the indicator, (Refer to 8 - ELECTRI-
CAL/INSTRUMENT CLUSTER - DIAGNOSIS AND
TESTING). For proper diagnosis of the speed control
system, the PCM, the PCI data bus, or the electronic
message inputs to the instrument cluster that control
the cruise indicator, a DRBIIItscan tool is required.
Refer to the appropriate diagnostic information.
DOOR AJAR INDICATOR
DESCRIPTION
A door ajar indicator is standard equipment on all
instrument clusters. The door ajar indicator consists
of the word ªdoorº, which appears in place of the
odometer/trip odometer information in the Vacuum-Fluorescent Display (VFD) of the instrument cluster.
The VFD is part of the cluster electronic circuit
board, and is visible through a cutout located near
the lower edge of the speedometer dial face in the
instrument cluster. The dark outer layer of the over-
lay prevents the VFD from being clearly visible when
it is not illuminated. The word ªdoorº appears in the
same blue-green color and at the same lighting level
as the odometer/trip odometer information through
the translucent outer layer of the overlay when it is
illuminated by the instrument cluster electronic cir-
cuit board. The door ajar indicator is serviced as a
unit with the instrument cluster.
OPERATION
The door ajar indicator gives an indication to the
vehicle operator that one or more of the passenger
compartment doors may be open or not completely
latched. This indicator is controlled by the instru-
ment cluster electronic circuit board based upon clus-
ter programming and electronic messages received by
the cluster from the Body Control Module (BCM)
over the Programmable Communications Interface
(PCI) data bus. The door ajar indicator function of
the Vacuum Fluorescent Display (VFD) is completely
controlled by the instrument cluster logic circuit, and
that logic will only allow this indicator to operate
when the instrument cluster receives a battery cur-
rent input on the fused ignition switch output (run-
start) circuit. Therefore, the VFD door ajar indication
will always be off when the ignition switch is in any
position except On or Start. The instrument cluster
will turn on the door ajar indicator for the following
reasons:
²Door Ajar Lamp-On Message- Each time the
cluster receives a door ajar lamp-on message from
the BCM indicating that a door is open or not com-
pletely latched, the door ajar indicator will be illumi-
nated. If the vehicle is not moving when the door
ajar lamp-on message is received, the VFD will
repeatedly and sequentially cycle its indication in
two second intervals with the odometer/trip odometer
information, the door ajar warning, and any other
active warnings including: gate ajar, glass ajar, and
low washer fluid. If the vehicle is moving, or once the
cluster of a non-moving vehicle receives an electronic
vehicle speed message from the Powertrain Control
Module (PCM) indicating a speed greater than zero,
the warning sequence will consist of three complete
display cycles, then revert to only the odometer/trip
odometer display until the door ajar switch is cycled.
The door ajar indicator will also be extinguished
when the cluster receives a door ajar lamp-off mes-
sage from the BCM, or if the ignition switch is
turned to the Off position, whichever occurs first.
KJINSTRUMENT CLUSTER 8J - 17
CRUISE INDICATOR (Continued)
The BCM continually monitors the door ajar
switches that are integral to each door latch to deter-
mine the status of the doors. The BCM then sends
the proper door ajar lamp-on and lamp-off messages
to the instrument cluster. For further diagnosis of
the door ajar indicator or the instrument cluster cir-
cuitry that controls the indicator, (Refer to 8 - ELEC-
TRICAL/INSTRUMENT CLUSTER - DIAGNOSIS
AND TESTING). For proper diagnosis of the door
ajar switches and circuits, the BCM, the PCI data
bus, or the electronic message inputs to the instru-
ment cluster that control the door ajar indicator, a
DRBIIItscan tool is required. Refer to the appropri-
ate diagnostic information.
ENGINE TEMPERATURE
GAUGE
DESCRIPTION
An engine coolant temperature gauge is standard
equipment on all instrument clusters. The engine
coolant temperature gauge is located in the right
lower corner of the instrument cluster, to the right of
the speedometer. The engine coolant temperature
gauge consists of a movable gauge needle or pointer
controlled by the instrument cluster circuitry and a
fixed 90 degree scale on the cluster overlay that
reads left-to-right from ªCº (or Cold) to ªHº (or Hot)
for all engines. An International Control and Display
Symbol icon for ªEngine Coolant Temperatureº is
located on the cluster overlay, in the center of the
gauge directly above the hub of the gauge needle.
The engine coolant temperature gauge graphics are
dark blue and black against a beige field, except for a
single light blue graduation at the far left (Cold) end
of the gauge scale and a single red graduation at the
far right (Hot) end of the gauge scale, making them
clearly visible within the instrument cluster in day-
light. When illuminated from behind by the panel
lamps dimmer controlled cluster illumination lighting
with the exterior lamps turned On, the blue graphics
appear blue and the red graphics appear red. The
orange gauge needle is internally illuminated. Gauge
illumination is provided by replaceable incandescent
bulb and bulb holder units located on the instrument
cluster electronic circuit board. The engine coolant
temperature gauge is serviced as a unit with the
instrument cluster.
OPERATION
The engine coolant temperature gauge gives an
indication to the vehicle operator of the engine cool-
ant temperature. This gauge is controlled by the
instrument cluster circuit board based upon cluster
programming and electronic messages received bythe cluster from the Powertrain Control Module
(PCM) over the Programmable Communications
Interface (PCI) data bus. The engine coolant temper-
ature gauge is an air core magnetic unit that receives
battery current on the instrument cluster electronic
circuit board through the fused ignition switch out-
put (run-start) circuit whenever the ignition switch is
in the On or Start positions. The cluster is pro-
grammed to move the gauge needle back to the low
end of the scale after the ignition switch is turned to
the Off position. The instrument cluster circuitry
controls the gauge needle position and provides the
following features:
²Engine Temperature Normal Message- Each
time the cluster receives a message from the PCM
indicating the engine coolant temperature is within
the normal operating range [up to about 124É C (255É
F) for gasoline engines, or about 110É C (230É F) for
diesel engines], the gauge needle is moved to the rel-
ative temperature position of the gauge scale.
²Engine Temperature High Message- Each
time the cluster receives a message from the PCM
indicating the engine coolant temperature is high
[above about 127É C (260É F) for gasoline engines, or
112É C (233É F) for diesel engines], the gauge needle
is moved into the center of the red warning zone on
the gauge scale.
²Engine Temperature Critical Message-
Each time the cluster receives a message from the
PCM indicating the engine coolant temperature is
critical [above about 132É C (269É F) for gasoline
engines, or 115É C (239É F) for diesel engines], the
gauge needle is moved to the high end of the red
warning zone on the gauge scale.
²Actuator Test- Each time the cluster is put
through the actuator test, the gauge needle will be
swept to the gauge calibration points on the gauge
scale in sequence in order to confirm the functional-
ity of the gauge and the cluster control circuitry.
The PCM continually monitors the engine coolant
temperature sensor to determine the engine operat-
ing temperature. The PCM then sends the proper
engine coolant temperature messages to the instru-
ment cluster. For further diagnosis of the engine cool-
ant temperature gauge or the instrument cluster
circuitry that controls the gauge, (Refer to 8 - ELEC-
TRICAL/INSTRUMENT CLUSTER - DIAGNOSIS
AND TESTING). If the instrument cluster moves the
engine coolant temperature gauge needle to indicate
a high or critical engine temperature, it may indicate
that the engine or the engine cooling system requires
service. For proper diagnosis of the engine coolant
temperature sensor, the PCM, the PCI data bus, or
the electronic message inputs to the instrument clus-
ter that control the engine coolant temperature
8J - 18 INSTRUMENT CLUSTERKJ
DOOR AJAR INDICATOR (Continued)
gauge, a DRBIIItscan tool is required. Refer to the
appropriate diagnostic information.
FRONT FOG LAMP INDICATOR
DESCRIPTION
A front fog lamp indicator is standard equipment
on all instrument clusters, but is only functional on
vehicles equipped with the optional front fog lamps.
The front fog lamp indicator is located above the
engine temperature gauge and to the right of the
speedometer in the instrument cluster. The front fog
lamp indicator consists of a stencil-like cutout of the
International Control and Display Symbol icon for
ªFront Fog Lightº in the opaque layer of the instru-
ment cluster overlay. The dark outer layer of the
overlay prevents the indicator from being clearly vis-
ible when it is not illuminated. A green Light Emit-
ting Diode (LED) behind the cutout in the opaque
layer of the overlay causes the icon to appear in
green through the translucent outer layer of the
overlay when it is illuminated from behind by the
LED, which is soldered onto the instrument cluster
electronic circuit board. When the exterior lighting is
turned On, the illumination intensity of the front fog
lamp indicator is dimmable, which is adjusted using
the panel lamps dimmer control ring on the left con-
trol stalk of the multi-function switch. The front fog
lamp indicator is serviced as a unit with the instru-
ment cluster.
OPERATION
The front fog lamp indicator gives an indication to
the vehicle operator whenever the front fog lamps
are illuminated. This indicator is controlled by a
transistor on the instrument cluster electronic circuit
board based upon the cluster programming and elec-
tronic messages received by the cluster from the
Body Control Module (BCM) over the Programmable
Communications Interface (PCI) data bus. The front
fog lamp indicator Light Emitting Diode (LED) is
completely controlled by the instrument cluster logic
circuit, and that logic will allow this indicator to
operate whenever the instrument cluster receives a
battery current input on the fused B(+) circuit.
Therefore, the LED can be illuminated regardless of
the ignition switch position. The LED only illumi-
nates when it is provided a path to ground by the
instrument cluster transistor. The instrument cluster
will turn on the front fog lamp indicator for the fol-
lowing reasons:
²Front Fog Lamp-On Message- Each time the
cluster receives a front fog lamp-on message from the
BCM indicating the front fog lamps are turned On,
the front fog lamp indicator will be illuminated. Theindicator remains illuminated until the cluster
receives a front fog lamp-off message from the BCM.
²Actuator Test- Each time the cluster is put
through the actuator test, the front fog lamp indica-
tor will be turned on, then off again during the bulb
check portion of the test to confirm the functionality
of the LED and the cluster control circuitry.
The BCM continually monitors the exterior light-
ing (multi-function) switch to determine the proper
outputs to the front fog lamp relay. The BCM then
sends the proper front fog lamp indicator lamp-on
and lamp-off messages to the instrument cluster. For
further diagnosis of the front fog lamp indicator or
the instrument cluster circuitry that controls the
indicator, (Refer to 8 - ELECTRICAL/INSTRUMENT
CLUSTER - DIAGNOSIS AND TESTING). For
proper diagnosis of the front fog lamp system, the
BCM, the PCI data bus, or the electronic message
inputs to the instrument cluster that control the
front fog lamp indicator, a DRBIIItscan tool is
required. Refer to the appropriate diagnostic infor-
mation.
FUEL GAUGE
DESCRIPTION
A fuel gauge is standard equipment on all instru-
ment clusters. The fuel gauge is located in the left
lower corner of the instrument cluster, to the left of
the tachometer. The fuel gauge consists of a movable
gauge needle or pointer controlled by the instrument
cluster circuitry and a fixed 90 degree scale on the
cluster overlay that reads left-to-right from E (or
Empty) to F (or Full). An International Control and
Display Symbol icon for ªFuelº is located on the clus-
ter overlay, in the center of the gauge directly above
the hub of the gauge needle. An arrowhead pointed
to the left side of the vehicle is imprinted on the clus-
ter overlay next to the ªFuelº icon in the fuel gauge
to provide the driver with a reminder as to the loca-
tion of the fuel filler access. The fuel gauge graphics
are dark blue and black against a beige field, except
for a single red graduation at the far left (Empty)
end of the gauge scale, making them clearly visible
within the instrument cluster in daylight. When illu-
minated from behind by the panel lamps dimmer
controlled cluster illumination lighting with the exte-
rior lamps turned On, the blue graphics appear blue
and the red graphics appear red. The orange gauge
needle is internally illuminated. Gauge illumination
is provided by replaceable incandescent bulb and
bulb holder units located on the instrument cluster
electronic circuit board. The fuel gauge is serviced as
a unit with the instrument cluster.
KJINSTRUMENT CLUSTER 8J - 19
ENGINE TEMPERATURE GAUGE (Continued)
OPERATION
The fuel gauge gives an indication to the vehicle
operator of the level of fuel in the fuel tank. This
gauge is controlled by the instrument cluster circuit
board based upon cluster programming and elec-
tronic messages received by the cluster from the
Powertrain Control Module (PCM) over the Program-
mable Communications Interface (PCI) data bus. The
fuel gauge is an air core magnetic unit that receives
battery current on the instrument cluster electronic
circuit board through the fused ignition switch out-
put (run-start) circuit whenever the ignition switch is
in the On or Start positions. The cluster is pro-
grammed to move the gauge needle back to the low
end of the scale after the ignition switch is turned to
the Off position. The instrument cluster circuitry
controls the gauge needle position and provides the
following features:
²Percent Tank Full Message- Each time the
cluster receives a message from the PCM indicating
the percent tank full, the cluster moves the gauge
needle to the relative fuel level position on the gauge
scale. The PCM applies an algorithm to the input
from the fuel tank sender to dampen gauge needle
movement against the negative effect that fuel slosh-
ing within the fuel tank can have on accurate inputs
to the PCM.
²Less Than 12.5 Percent Tank Full Message-
Each time the cluster receives messages from the
PCM indicating the percent tank full is less than
12.5 (one-eighth), the gauge needle is moved to the
proper position on the gauge scale and the low fuel
indicator is illuminated. The low fuel indicator
remains illuminated until the cluster receives mes-
sages from the PCM indicating that the percent tank
full is greater than 12.5 (one-eighth), or until the
ignition switch is turned to the Off position, which-
ever occurs first.
²Less Than Empty Percent Tank Full Mes-
sage- Each time the cluster receives a message from
the PCM indicating the percent tank full is less than
empty, the gauge needle is moved to the far left (low)
end of the gauge scale and the low fuel indicator is
illuminated immediately. This message would indi-
cate that the fuel tank sender input to the PCM is a
short circuit.
²More Than Full Percent Tank Full Message
- Each time the cluster receives a message from the
PCM indicating the percent tank full is more than
full, the gauge needle is moved to the far left (low)
end of the gauge scale and the low fuel indicator is
illuminated immediately. This message would indi-
cate that the fuel tank sender input to the PCM is an
open circuit.
²Actuator Test- Each time the cluster is put
through the actuator test, the gauge needle will beswept to the gauge calibration points on the gauge
scale in sequence in order to confirm the functional-
ity of the gauge and the cluster control circuitry.
The PCM continually monitors the fuel tank
sender input to determine the fuel level. The PCM
then applies an algorithm to the input and sends the
proper percent tank full messages to the instrument
cluster. For further diagnosis of the fuel gauge or the
instrument cluster circuitry that controls the gauge,
(Refer to 8 - ELECTRICAL/INSTRUMENT CLUS-
TER - DIAGNOSIS AND TESTING). For proper
diagnosis of the fuel tank sender, the PCM, the PCI
data bus, or the electronic message inputs to the
instrument cluster that control the fuel gauge, a
DRBIIItscan tool is required. Refer to the appropri-
ate diagnostic information.
GATE AJAR INDICATOR
DESCRIPTION
A gate ajar indicator is standard equipment on all
instrument clusters. The gate ajar indicator consists
of the word ªgateº, which appears in place of the
odometer/trip odometer information in the Vacuum-
Fluorescent Display (VFD) of the instrument cluster.
The VFD is part of the cluster electronic circuit
board, and is visible through a cutout located near
the lower edge of the speedometer dial face in the
instrument cluster. The dark outer layer of the over-
lay prevents the VFD from being clearly visible when
it is not illuminated. The word ªgateº appears in the
same blue-green color and at the same lighting level
as the odometer/trip odometer information through
the translucent outer layer of the overlay when it is
illuminated by the instrument cluster electronic cir-
cuit board. The gate ajar indicator is serviced as a
unit with the instrument cluster.
OPERATION
The gate ajar indicator gives an indication to the
vehicle operator that the rear tailgate may be open
or not completely latched. This indicator is controlled
by the instrument cluster electronic circuit board
based upon cluster programming and electronic mes-
sages received by the cluster from the Body Control
Module (BCM) over the Programmable Communica-
tions Interface (PCI) data bus. The gate ajar indica-
tor function of the Vacuum Fluorescent Display
(VFD) is completely controlled by the instrument
cluster logic circuit, and that logic will only allow
this indicator to operate when the instrument cluster
receives a battery current input on the fused ignition
switch output (run-start) circuit. Therefore, the VFD
gate ajar indicator will always be off when the igni-
tion switch is in any position except On or Start. The
8J - 20 INSTRUMENT CLUSTERKJ
FUEL GAUGE (Continued)
instrument cluster will turn on the gate ajar indica-
tor for the following reasons:
²Gate Ajar Lamp-On Message- Each time the
cluster receives a gate ajar lamp-on message from
the BCM indicating that the rear tailgate is open or
not completely latched, the gate ajar indicator will be
illuminated. If the vehicle is not moving when the
gate ajar lamp-on message is received, the VFD will
repeatedly and sequentially cycle its indication in
two second intervals with the odometer/trip odometer
information, the gate ajar warning, and any other
active warnings including: door ajar, glass ajar, and
low washer fluid. If the vehicle is moving, or once the
cluster of a non-moving vehicle receives an electronic
vehicle speed message from the Powertrain Control
Module (PCM) indicating a speed greater than zero,
the warning sequence will consist of three complete
display cycles, then revert to only the odometer/trip
odometer display until the tailgate ajar switch is
cycled. The gate ajar indicator will also be extin-
guished when the cluster receives a gate ajar lamp-
off message from the BCM, or if the ignition switch is
turned to the Off position, whichever occurs first.
The BCM continually monitors the tailgate ajar
switch that is integral to the tailgate latch to deter-
mine the status of the rear tailgate. The BCM then
sends the proper gate ajar lamp-on and lamp-off mes-
sages to the instrument cluster. For further diagnosis
of the gate ajar indicator or the instrument cluster
circuitry that controls the indicator, (Refer to 8 -
ELECTRICAL/INSTRUMENT CLUSTER - DIAGNO-
SIS AND TESTING). For proper diagnosis of the tail-
gate ajar switch and circuit, the BCM, the PCI data
bus, or the electronic message inputs to the instru-
ment cluster that control the gate ajar indicator, a
DRBIIItscan tool is required. Refer to the appropri-
ate diagnostic information.
GLASS AJAR INDICATOR
DESCRIPTION
A glass ajar indicator is standard equipment on all
instrument clusters. The glass ajar indicator consists
of the word ªglassº, which appears in place of the
odometer/trip odometer information in the Vacuum-
Fluorescent Display (VFD) of the instrument cluster.
The VFD is part of the cluster electronic circuit
board, and is visible through a cutout located near
the lower edge of the speedometer dial face in the
instrument cluster. The dark outer layer of the over-
lay prevents the VFD from being clearly visible when
it is not illuminated. The word ªglassº appears in the
same blue-green color and at the same lighting level
as the odometer/trip odometer information through
the translucent outer layer of the overlay when it isilluminated by the instrument cluster electronic cir-
cuit board. The glass ajar indicator is serviced as a
unit with the instrument cluster.
OPERATION
The glass ajar indicator gives an indication to the
vehicle operator that the rear flip-up glass may be
open or not completely latched. This indicator is con-
trolled by the instrument cluster electronic circuit
board based upon cluster programming and elec-
tronic messages received by the cluster from the
Body Control Module (BCM) over the Programmable
Communications Interface (PCI) data bus. The glass
ajar indicator function of the Vacuum Fluorescent
Display (VFD) is completely controlled by the instru-
ment cluster logic circuit, and that logic will only
allow this indicator to operate when the instrument
cluster receives a battery current input on the fused
ignition switch output (run-start) circuit. Therefore,
the VFD glass ajar indicator will always be off when
the ignition switch is in any position except On or
Start. The instrument cluster will turn on the glass
ajar indicator for the following reasons:
²Glass Ajar Lamp-On Message- Each time the
cluster receives a glass ajar lamp-on message from
the BCM indicating that the rear flip-up glass is
open or not completely latched, the glass ajar indica-
tor will be illuminated. If the vehicle is not moving
when the glass ajar lamp-on message is received, the
VFD will repeatedly and sequentially cycle its indica-
tion in two second intervals with the odometer/trip
odometer information, the glass ajar warning, and
any other active warnings including: door ajar, gate
ajar, and low washer fluid. If the vehicle is moving,
or once the cluster of a non-moving vehicle receives
an electronic vehicle speed message from the Power-
train Control Module (PCM) indicating a speed
greater than zero, the warning sequence will consist
of three complete display cycles, then revert to only
the odometer/trip odometer display until the glass
ajar switch is cycled. The glass ajar indicator will
also be extinguished when the cluster receives a
glass ajar lamp-off message from the BCM, or if the
ignition switch is turned to the Off position, which-
ever occurs first.
The BCM continually monitors the glass ajar
switch that is integral to the flip-up glass latch to
determine the status of the rear flip-up glass. The
BCM then sends the proper glass ajar lamp-on and
lamp-off messages to the instrument cluster. For fur-
ther diagnosis of the glass ajar indicator or the
instrument cluster circuitry that controls the indica-
tor, (Refer to 8 - ELECTRICAL/INSTRUMENT
CLUSTER - DIAGNOSIS AND TESTING). For
proper diagnosis of the glass ajar switch and circuit,
the BCM, the PCI data bus, or the electronic mes-
KJINSTRUMENT CLUSTER 8J - 21
GATE AJAR INDICATOR (Continued)
sage inputs to the instrument cluster that control the
glass ajar indicator, a DRBIIItscan tool is required.
Refer to the appropriate diagnostic information.
HIGH BEAM INDICATOR
DESCRIPTION
A high beam indicator lamp is standard equipment
on all instrument clusters. The high beam indicator
is located near the upper edge of the instrument clus-
ter overlay, between the tachometer and the speed-
ometer. The high beam indicator consists of a stencil-
like cutout of the International Control and Display
Symbol icon for ªHigh Beamº in the opaque layer of
the instrument cluster overlay. The dark outer layer
of the overlay prevents the indicator from being
clearly visible when the it is not illuminated. A blue
Light Emitting Diode (LED) behind the cutout in the
opaque layer of the overlay causes the icon to appear
in blue through the translucent outer layer of the
overlay when it is illuminated from behind by the
LED, which is soldered onto the instrument cluster
electronic circuit board. The high beam indicator is
serviced as a unit with the instrument cluster.
OPERATION
The high beam indicator gives an indication to the
vehicle operator whenever the headlamp high beams
are illuminated. This indicator is controlled by a
transistor on the instrument cluster electronic circuit
board based upon the cluster programming and elec-
tronic messages received by the cluster from the
Body Control Module (BCM) over the Programmable
Communications Interface (PCI) data bus. The high
beam indicator Light Emitting Diode (LED) is com-
pletely controlled by the instrument cluster logic cir-
cuit, and that logic will allow this indicator to
operate whenever the instrument cluster receives a
battery current input on the fused B(+) circuit.
Therefore, the LED can be illuminated regardless of
the ignition switch position. The LED only illumi-
nates when it is provided a path to ground by the
instrument cluster transistor. The instrument cluster
will turn on the high beam indicator for the following
reasons:
²High Beam Headlamps-On Message- Each
time the cluster receives a high beam headlamps-on
message from the BCM indicating the headlamp high
beams are turned On, the high beam indicator will
be illuminated. The indicator remains illuminated
until the cluster receives a high beam headlamps-off
message from the BCM.
²Actuator Test- Each time the cluster is put
through the actuator test, the high beam indicator
will be turned on, then off again during the bulbcheck portion of the test to confirm the functionality
of the LED and the cluster control circuitry.
The BCM continually monitors the exterior light-
ing (multi-function) switch to determine the proper
outputs to the headlamp low beam and high beam
relays. The BCM then sends the proper high beam
indicator lamp-on and lamp-off messages to the
instrument cluster. For further diagnosis of the high
beam indicator or the instrument cluster circuitry
that controls the indicator, (Refer to 8 - ELECTRI-
CAL/INSTRUMENT CLUSTER - DIAGNOSIS AND
TESTING). For proper diagnosis of the headlamp
system, the BCM, the PCI data bus, or the electronic
message inputs to the instrument cluster that control
the high beam indicator, a DRBIIItscan tool is
required. Refer to the appropriate diagnostic infor-
mation.
LOW FUEL INDICATOR
DESCRIPTION
A low fuel indicator is standard equipment on all
instrument clusters. The low fuel indicator is located
above the fuel gauge and to the left of the tachometer
in the instrument cluster. The low fuel indicator con-
sists of a stencil-like cutout of the International Con-
trol and Display Symbol icon for ªFuelº in the opaque
layer of the instrument cluster overlay. The dark
outer layer of the overlay prevents the indicator from
being clearly visible when it is not illuminated. An
amber Light Emitting Diode (LED) behind the cutout
in the opaque layer of the overlay causes the icon to
appear in amber through the translucent outer layer
of the overlay when it is illuminated from behind by
the LED, which is soldered onto the instrument clus-
ter electronic circuit board. The low fuel indicator is
serviced as a unit with the instrument cluster.
OPERATION
The low fuel indicator gives an indication to the
vehicle operator when the level of fuel in the fuel
tank becomes low. This indicator is controlled by a
transistor on the instrument cluster electronic circuit
board based upon cluster programming and elec-
tronic messages received by the cluster from the
Powertrain Control Module (PCM) over the Program-
mable Communications Interface (PCI) data bus. The
low fuel indicator Light Emitting Diode (LED) is
completely controlled by the instrument cluster logic
circuit, and that logic will only allow this indicator to
operate when the instrument cluster receives a bat-
tery current input on the fused ignition switch out-
put (run-start) circuit. Therefore, the LED will
always be off when the ignition switch is in any posi-
tion except On or Start. The LED only illuminates
8J - 22 INSTRUMENT CLUSTERKJ
GLASS AJAR INDICATOR (Continued)
when it is provided a path to ground by the instru-
ment cluster transistor. The instrument cluster will
turn on the low fuel indicator for the following rea-
sons:
²Bulb Test- Each time the ignition switch is
turned to the On position the low fuel indicator is
illuminated for about three seconds as a bulb test.
²Less Than 12.5 Percent Tank Full Message-
Each time the cluster receives a message from the
PCM indicating that the percent tank full is less
than 12.5 (one-eighth), the low fuel indicator is illu-
minated. The indicator remains illuminated until the
cluster receives messages from the PCM indicating
that the percent tank full has increased to greater
than 12.5 (one-eighth). The PCM applies an algo-
rithm to the input from the fuel tank sender to
dampen the illumination of the low fuel indicator
against the negative effect that fuel sloshing within
the fuel tank can have on accurate inputs to the
PCM.
²Less Than Empty Percent Tank Full Mes-
sage- Each time the cluster receives a message from
the PCM indicating the percent tank full is less than
empty, the low fuel indicator is illuminated immedi-
ately. This message would indicate that the fuel tank
sender input to the PCM is a short circuit.
²More Than Full Percent Tank Full Message
- Each time the cluster receives a message from the
PCM indicating the percent tank full is more than
full, the low fuel indicator is illuminated immedi-
ately. This message would indicate that the fuel tank
sender input to the PCM is an open circuit.
²Communication Error- If the cluster fails to
receive a percent tank full message for more than
about twelve seconds, the cluster control circuitry
will illuminate the low fuel indicator until a new per-
cent tank full message is received, or until the igni-
tion switch is turned to the Off position, whichever
occurs first.
²Actuator Test- Each time the cluster is put
through the actuator test, the low fuel indicator will
be turned on, then off again during the bulb check
portion of the test to confirm the functionality of the
LED and the cluster control circuitry.
The PCM continually monitors the fuel tank
sender input to determine the fuel level. The PCM
then applies an algorithm to the input and sends the
proper percent tank full messages to the instrument
cluster. For further diagnosis of the low fuel indicator
or the instrument cluster circuitry that controls the
LED, (Refer to 8 - ELECTRICAL/INSTRUMENT
CLUSTER - DIAGNOSIS AND TESTING). For
proper diagnosis of the fuel tank sender, the PCM,
the PCI data bus, or the electronic message inputs to
the instrument cluster that control the low fuel indi-cator, a DRBIIItscan tool is required. Refer to the
appropriate diagnostic information.
LOW OIL PRESSURE
INDICATOR
DESCRIPTION
A low oil pressure indicator is standard equipment
on all instrument clusters. The low oil pressure indi-
cator is located near the lower edge of the instrument
cluster, between the tachometer and the speedometer.
The low oil pressure indicator consists of a stencil-
like cutout of the International Control and Display
Symbol icon for ªEngine Oilº in the opaque layer of
the instrument cluster overlay. The dark outer layer
of the overlay prevents the indicator from being
clearly visible when it is not illuminated. A red Light
Emitting Diode (LED) behind the cutout in the
opaque layer of the overlay causes the icon to appear
in red through the translucent outer layer of the
overlay when it is illuminated from behind by the
LED, which is soldered onto the instrument cluster
electronic circuit board. The low oil pressure indica-
tor is serviced as a unit with the instrument cluster.
OPERATION
The low oil pressure indicator gives an indication
to the vehicle operator when the engine oil pressure
is low. This indicator is controlled by a transistor on
the instrument cluster electronic circuit board based
upon cluster programming and electronic messages
received by the cluster from the Powertrain Control
Module (PCM) over the Programmable Communica-
tions Interface (PCI) data bus. The low oil pressure
indicator Light Emitting Diode (LED) is completely
controlled by the instrument cluster logic circuit, and
that logic will only allow this indicator to operate
when the instrument cluster receives a battery cur-
rent input on the fused ignition switch output (run-
start) circuit. Therefore, the LED will always be off
when the ignition switch is in any position except On
or Start. The LED only illuminates when it is pro-
vided a path to ground by the instrument cluster
transistor. The instrument cluster will turn on the
low oil pressure indicator for the following reasons:
²Bulb Test- Each time the ignition switch is
turned to the On position the low oil pressure indica-
tor is illuminated as a bulb test. The indicator will
remain illuminated until the engine is started
(engine speed is greater than 450 rpm), or until the
ignition switch is turned to the Off position, which-
ever occurs first.
²Engine Oil Pressure Low Message- Once the
engine has been started (engine speed has been
greater than 450 rpm), each time the cluster receives
KJINSTRUMENT CLUSTER 8J - 23
LOW FUEL INDICATOR (Continued)
three consecutive messages from the PCM indicating
that the engine oil pressure is about 4 kPa or lower
(about 0.6 psi or lower), the low oil pressure indicator
is illuminated. The indicator remains illuminated
until the cluster receives a single message from the
PCM indicating that the engine oil pressure is about
76 kPa or higher (about 11 psi or higher), or until the
ignition switch is turned to the Off position, which-
ever occurs first. Once the cluster monitors and
engine speed of greater than 450 rpm, the cluster
logic will ignore engine speed in determining low oil
pressure indicator operation for the remainder of the
current ignition cycle.
²Actuator Test- Each time the cluster is put
through the actuator test, the low oil pressure indi-
cator will be turned on, then off again during the
bulb check portion of the test to confirm the function-
ality of the LED and the cluster control circuitry.
The PCM continually monitors the engine oil pres-
sure sensor to determine the engine oil pressure. The
PCM then sends the proper engine oil pressure mes-
sages to the instrument cluster. For further diagnosis
of the low oil pressure indicator or the instrument
cluster circuitry that controls the LED, (Refer to 8 -
ELECTRICAL/INSTRUMENT CLUSTER - DIAGNO-
SIS AND TESTING). If the instrument cluster turns
on the indicator after the bulb test, it may indicate
that the engine or the engine oiling system requires
service. For proper diagnosis of the engine oil pres-
sure sensor, the PCM, the PCI data bus, or the elec-
tronic message inputs to the instrument cluster that
control the low oil pressure indicator, a DRBIIItscan
tool is required. Refer to the appropriate diagnostic
information.
MALFUNCTION INDICATOR
LAMP (MIL)
DESCRIPTION
A Malfunction Indicator Lamp (MIL) is standard
equipment on all instrument clusters. The MIL is
located above the coolant temperature gauge and to
the right of the speedometer in the instrument clus-
ter. The MIL consists of a stencil-like cutout of the
International Control and Display Symbol icon for
ªEngineº in the opaque layer of the instrument clus-
ter overlay. The dark outer layer of the overlay pre-
vents the indicator from being clearly visible when it
is not illuminated. An amber Light Emitting Diode
(LED) behind the cutout in the opaque layer of the
overlay causes the icon to appear in amber through
the translucent outer layer of the overlay when it is
illuminated from behind by the LED, which is sol-
dered onto the instrument cluster electronic circuitboard. The MIL is serviced as a unit with the instru-
ment cluster.
OPERATION
The Malfunction Indicator Lamp (MIL) gives an
indication to the vehicle operator when the Power-
train Control Module (PCM) has recorded a Diagnos-
tic Trouble Code (DTC) for an On-Board Diagnostics
II (OBDII) emissions-related circuit or component
malfunction. This indicator is controlled by a transis-
tor on the instrument cluster electronic circuit board
based upon cluster programming and electronic mes-
sages received by the cluster from the PCM over the
Programmable Communications Interface (PCI) data
bus. The MIL Light Emitting Diode (LED) is com-
pletely controlled by the instrument cluster logic cir-
cuit, and that logic will only allow this indicator to
operate when the instrument cluster receives a bat-
tery current input on the fused ignition switch out-
put (run-start) circuit. Therefore, the LED will
always be off when the ignition switch is in any posi-
tion except On or Start. The LED only illuminates
when it is provided a path to ground by the instru-
ment cluster transistor. The instrument cluster will
turn on the MIL for the following reasons:
²Bulb Test- Each time the ignition switch is
turned to the On position the MIL is illuminated for
about seven seconds as a bulb test.
²PCM Lamp-On Message- Each time the clus-
ter receives a malfunction indicator lamp-on message
from the PCM, the indicator will be illuminated. The
indicator can be flashed on and off, or illuminated
solid, as dictated by the PCM message. For some
DTC's, if a problem does not recur, the PCM will
send a lamp-off message automatically. Other DTC's
may require that a fault be repaired and the PCM be
reset before a lamp-off message will be sent. For
more information on the PCM and the DTC set and
reset parameters, (Refer to 25 - EMISSIONS CON-
TROL - OPERATION).
²Communication Error- If the cluster receives
no malfunction indicator lamp-on or lamp-off mes-
sage from the PCM for twenty consecutive seconds,
the MIL is illuminated by the instrument cluster.
The indicator remains controlled and illuminated by
the cluster until a valid malfunction indicator
lamp-on or lamp-off message is received from the
PCM.
²Actuator Test- Each time the cluster is put
through the actuator test, the MIL will be turned on,
then off again during the bulb check portion of the
test to confirm the functionality of the LED and the
cluster control circuitry.
The PCM continually monitors each of the many
fuel and emissions system circuits and sensors to
decide whether the system is in good operating con-
8J - 24 INSTRUMENT CLUSTERKJ
LOW OIL PRESSURE INDICATOR (Continued)