²Intermittent Wipe Mode- The control knob on
the right (wiper) control stalk of the multi-function
switch has five minor detent intermittent wipe posi-
tions. When selected, these switch positions will
cause the front wiper system to operate with one of
five delay intervals between complete wipe cycles.
²Mist Wipe Mode- The right (wiper) control
stalk of the multi-function switch has a momentary
Mist position. When selected, this switch position
will operate the front wipers in a low speed continu-
ous cycle for as long as the switch is held closed,
then will complete the current wipe cycle and park
the front wiper blades near the base of the wind-
shield when the switch is released.
²Washer Mode- When the momentary front
wash position of the right (wiper) control stalk of the
multi-function switch is selected with the front wiper
system operating in a continuous wipe mode, washer
fluid will be dispensed onto the windshield glass
through the washer nozzles for as long as the washer
switch is held closed. When the front washer switch
is actuated with the front wiper system operating in
an intermittent wipe mode, washer fluid is still dis-
pensed until the switch is released; however, the
front wipers will operate in a low speed continuous
cycle from the time the washer switch is closed until
several wipe cycles after the switch is released,
before returning to the selected intermittent wipe
mode.
²Wipe-After-Wash Mode- When the momentary
front wash position of the right (wiper) control stalk
of the multi-function switch is selected with the front
wiper system turned Off, the internal circuitry of the
BCM provides a wipe-after-wash feature. When
selected, this feature will operate the washer pump/
motor and the front wipers for as long as the front
washer switch is held closed, then provide several
additional wipe cycles after the switch is released
before parking the front wiper blades near the base
of the windshield.
OPERATION
The front wiper and washer system is designed to
provide the vehicle operator with a convenient, safe,
and reliable means of maintaining visibility through
the windshield glass. The various components of this
system are designed to convert electrical energy pro-
duced by the vehicle electrical system into the
mechanical action of the wiper blades to wipe the
outside surface of the glass, as well as into the
hydraulic action of the washer system to apply
washer fluid stored in an on-board reservoir to the
area of the glass to be wiped. When combined, these
components provide the means to effectively main-
tain clear visibility for the vehicle operator by remov-
ing excess accumulations of rain, snow, bugs, mud, orother minor debris from the outside windshield glass
surface that might be encountered while driving the
vehicle under numerous types of inclement operating
conditions.
The vehicle operator initiates all front wiper and
washer system functions with the right (wiper) con-
trol stalk of the multi-function switch that extends
from the right side of the steering column, just below
the steering wheel. Rotating the control knob on the
end of the control stalk, selects the Off, Delay, Low,
or High front wiper system operating modes. In the
Delay mode, the control knob also allows the vehicle
operator to select from one of five intermittent wipe
Delay intervals. Pulling the right control stalk down-
wards actuates the momentary front wiper system
Mist mode switch, while pulling the right control
stalk towards the steering wheel actuates the
momentary front washer system switch. The multi-
function switch provides hard wired resistor multi-
plexed inputs to the Body Control Module (BCM) for
all of the front wiper system functions, as well as a
separate hard wired sense input to the BCM for the
front washer system function.
The front wiper and washer system will only oper-
ate when the ignition switch is in the Accessory or
On positions. Battery current is directed from a B(+)
fuse in the Power Distribution Center (PDC) to the
wiper and washer system circuit breaker in the Junc-
tion Block (JB) through a fused ignition switch out-
put (run-acc) circuit. The automatic resetting circuit
breaker then provides battery current through a
fused ignition switch output (run-acc) circuit to the
wiper high/low relay, the wiper on/off relay, and the
park switch within the front wiper motor. A separate
fuse in the JB provides battery current through
another fused ignition switch output (run-acc) circuit
to the multi-function switch. The multi-function
switch circuitry uses this battery feed and a ground
circuit input to directly control the operation and
direction of the reversible electric washer pump/mo-
tor unit. The BCM uses low side drivers to control
front wiper system operation by energizing or de-en-
ergizing the wiper high/low and wiper on/off relays.
The hard wired circuits and components of the
front wiper and washer system may be diagnosed
and tested using conventional diagnostic tools and
procedures. However, conventional diagnostic meth-
ods may not prove conclusive in the diagnosis of the
Body Control Module (BCM), or the inputs to or out-
puts from the BCM that control the front wiper and
washer system operating modes. The most reliable,
efficient, and accurate means to diagnose the BCM,
or the BCM inputs and outputs related to the various
front wiper and washer system operating modes
requires the use of a DRBIIItscan tool. Refer to the
appropriate diagnostic information.
8R - 4 FRONT WIPERS/WASHERSKJ
FRONT WIPERS/WASHERS (Continued)
Following are paragraphs that briefly describe the
operation of each of the front wiper and washer sys-
tem operating modes.
CONTINUOUS WIPE MODE When the Low posi-
tion of the control knob on the right (wiper) control
stalk of the multi-function switch is selected, the
Body Control Module (BCM) energizes the wiper
on/off relay. This directs battery current through the
normally open contacts of the energized wiper on/off
relay and the normally closed contacts of the de-en-
ergized wiper high/low relay to the low speed brush
of the front wiper motor, causing the front wipers to
cycle at low speed. When the High position of the
control knob is selected, the BCM energizes both the
wiper on/off relay and the wiper high/low relay. This
directs battery current through the normally open
contacts of the energized wiper on/off relay and the
normally open contacts of the energized wiper high/
low relay to the high speed brush of the front wiper
motor, causing the front wipers to cycle at high
speed.
When the Off position of the control knob is
selected, the BCM de-energizes both the wiper on/off
and wiper high low relays, then one of two events
will occur. The event that occurs depends upon the
position of the wiper blades on the windshield at the
moment that the control knob Off position is selected.
If the wiper blades are in the down position on the
windshield when the Off position is selected, the
park switch that is integral to the front wiper motor
is closed to ground and the wiper motor ceases to
operate. If the wiper blades are not in the down posi-
tion on the windshield at the moment the Off posi-
tion is selected, the park switch is closed to battery
current from the fused ignition switch output (run-
acc) circuit of the front wiper motor. The park switch
directs this battery current to the low speed brush of
the wiper motor through the wiper park switch sense
circuit and the normally closed contacts of the de-en-
ergized wiper on/off and wiper high/low relays. This
causes the wiper motor to continue running at low
speed until the wiper blades are in the down position
on the windshield and the park switch is again
closed to ground.
INTERMITTENT WIPE MODE When the control
knob on the right (wiper) control stalk of the multi-
function switch is moved to one of the Delay interval
positions, the BCM electronic intermittent wipe logic
circuit responds by calculating the correct length of
time between wiper sweeps based upon the selected
delay interval input. The BCM monitors the chang-
ing state of the wiper motor park switch through a
hard wired front wiper park switch sense circuit
input. This input allows the BCM to determine the
proper intervals at which to energize and de-energize
the wiper on/off relay to operate the front wipermotor intermittently for one low speed cycle at a
time. The BCM logic is also programmed to provide
an immediate wipe cycle and begin a new delay
interval timing cycle each time a shorter delay inter-
val is selected, and to add the remaining delay tim-
ing interval to the new delay interval timing before
the next wipe cycle occurs each time a longer delay
interval is selected.
MIST WIPE MODE When the right (wiper) control
stalk of the multi-function switch is moved to the
momentary Mist position, the BCM energizes the
wiper on/off relay for as long as the Mist switch is
held closed, then de-energizes the relay when the
state of the Mist switch input changes to open. The
BCM can operate the front wiper motor in this mode
for only one low speed cycle at a time, or for an
indefinite number of sequential low speed cycles,
depending upon how long the Mist switch is held
closed.
WASH MODE When the right (wiper) control stalk
of the multi-function switch is moved to the momen-
tary front Wash position while the control knob is in
the Low or High positions, the circuitry within the
switch directs battery current and ground to the
washer pump/motor unit. This will cause the washer
pump/motor unit to be energized for as long as the
front Wash switch is held closed, and to de-energize
when the front Wash switch is released. When the
right (wiper) control stalk of the multi-function
switch is moved to the momentary front Wash posi-
tion while the control knob is in one of the Delay
interval positions, the front washer pump/motor oper-
ation is the same. However, the BCM energizes the
wiper on/off relay to override the selected delay inter-
val and operate the front wiper motor in a continu-
ous low speed mode for as long as the front Wash
switch is held closed, then de-energizes the relay and
reverts to the selected delay mode interval several
wipe cycles after the front Wash switch is released.
The BCM detects the front Wash switch state
through a hard wired washer pump driver circuit
input from the multi-function switch.
WIPE-AFTER-WASH MODE When the right
(wiper) control stalk of the multi-function switch is
moved to the momentary front Wash position while
the control knob is in the Off position, the BCM
detects that switch state through a hard wired
washer pump driver circuit input from the multi-
function switch. The BCM responds to this input by
energizing the wiper on/off relay for as long as the
Wash switch is held closed, then de-energizes the
relay several wipe cycles after the front Wash switch
is released. The BCM monitors the changing state of
the wiper motor park switch through a hard wired
front wiper park switch sense circuit input. This
input allows the BCM to count the number of wipe
KJFRONT WIPERS/WASHERS 8R - 5
FRONT WIPERS/WASHERS (Continued)
cycles that occur after the front Wash switch state
changes to open, and to determine the proper inter-
val at which to de-energize the wiper on/off relay to
complete the wipe-after-wash mode cycle.
DIAGNOSIS AND TESTING - FRONT WIPER &
WASHER SYSTEM
FRONT WIPER SYSTEM
If the front wiper motor operates, but the wipers
do not move on the windshield, replace the faulty
front wiper module. If the wipers operate, but chat-
ter, lift, or do not clear the glass, clean and inspect
the front wiper system components as required.
(Refer to 8 - ELECTRICAL/FRONT WIPERS/WASH-
ERS - INSPECTION) and (Refer to 8 - ELECTRI-
CAL/FRONT WIPERS/WASHERS - CLEANING). For
diagnosis and testing of the multi-function switch
(Refer to 8 - ELECTRICAL/LAMPS/LIGHTING -
EXTERIOR/MULTI-FUNCTION SWITCH - DIAG-
NOSIS AND TESTING). Refer to the appropriate
wiring information. The wiring information includes
wiring diagrams, proper wire and connector repair
procedures, details of wire harness routing and
retention, connector pin-out information and location
views for the various wire harness connectors, splices
and grounds.
The hard wired circuits and components of the
front wiper and washer system may be diagnosed
and tested using conventional diagnostic tools and
procedures. However, conventional diagnostic meth-
ods may not prove conclusive in the diagnosis of the
Body Control Module (BCM), or the inputs to or out-
puts from the BCM that control the various front
wiper and washer system operating modes. The most
reliable, efficient, and accurate means to diagnose
the BCM, or the BCM inputs and outputs related to
the various front wiper and washer system operating
modes requires the use of a DRBIIItscan tool. Refer
to the appropriate diagnostic information.
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
SIDE CURTAIN AIRBAG, OR INSTRUMENT PANEL
COMPONENT DIAGNOSIS OR SERVICE. DISCON-
NECT AND ISOLATE THE BATTERY NEGATIVE
(GROUND) CABLE, THEN WAIT TWO MINUTES FOR
THE SYSTEM CAPACITOR TO DISCHARGE BEFORE
PERFORMING FURTHER DIAGNOSIS OR SERVICE.
THIS IS THE ONLY SURE WAY TO DISABLE THE
SUPPLEMENTAL RESTRAINT SYSTEM. FAILURE TO
TAKE THE PROPER PRECAUTIONS COULDRESULT IN ACCIDENTAL AIRBAG DEPLOYMENT
AND POSSIBLE PERSONAL INJURY.
FRONT WASHER SYSTEM
The diagnosis found here addresses an electrically
inoperative front washer system. If the washer
pump/motor operates, but no washer fluid is emitted
from the front washer nozzles, be certain to check
the fluid level in the reservoir. Also inspect the front
washer system components as required. (Refer to 8 -
ELECTRICAL/FRONT WIPERS/WASHERS -
INSPECTION). Refer to the appropriate wiring infor-
mation. The wiring information includes wiring dia-
grams, proper wire and connector repair procedures,
details of wire harness routing and retention, connec-
tor pin-out information and location views for the
various wire harness connectors, splices and grounds.
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
SIDE CURTAIN AIRBAG, OR INSTRUMENT PANEL
COMPONENT DIAGNOSIS OR SERVICE. DISCON-
NECT AND ISOLATE THE BATTERY NEGATIVE
(GROUND) CABLE, THEN WAIT TWO MINUTES FOR
THE SYSTEM CAPACITOR TO DISCHARGE BEFORE
PERFORMING FURTHER DIAGNOSIS OR SERVICE.
THIS IS THE ONLY SURE WAY TO DISABLE THE
SUPPLEMENTAL RESTRAINT SYSTEM. FAILURE TO
TAKE THE PROPER PRECAUTIONS COULD
RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT
AND POSSIBLE PERSONAL INJURY.
(1) Turn the ignition switch to the On position.
Turn the control knob on the right (wiper) control
stalk of the multi-function switch to the On position.
Check whether the front wiper system is operating.
If OK, go to Step 2. If not OK, test and repair the
front wiper system before continuing with these
tests. Refer to FRONT WIPER SYSTEM .
(2) Turn the control ring on the right (wiper) con-
trol stalk of the multi-function switch to the rear
Wash position. Check whether the rear washer sys-
tem is operating. If OK, test the multi-function
switch. (Refer to 8 - ELECTRICAL/LAMPS/LIGHT-
ING - EXTERIOR/MULTI-FUNCTION SWITCH -
DIAGNOSIS AND TESTING). If the multi-function
switch tests OK, go to Step 3. If the multi-function
switch does not test OK, replace the faulty switch.
(3) Turn the ignition switch to the Off position.
Disconnect and isolate the battery negative cable.
Disconnect the headlamp and dash wire harness con-
nector for the washer pump/motor unit from the
pump/motor unit connector receptacle. Check for con-
tinuity between the washer pump driver circuit cav-
8R - 6 FRONT WIPERS/WASHERSKJ
FRONT WIPERS/WASHERS (Continued)
allows the motor to complete its current wipe cycle
after the wiper system has been turned Off, and to
park the wiper blades in the lowest portion of the
wipe pattern. The automatic resetting circuit breaker
protects the motor from overloads. The wiper motor
crank arm, the two wiper linkage members, and the
two wiper pivots mechanically convert the rotary out-
put of the wiper motor to the back and forth wiping
motion of the wiper arms and blades on the glass.
REMOVAL
(1) Unlatch and open the hood.
(2) Disconnect and isolate the battery negative
cable.
(3) Remove both front wiper arms from the wiper
pivots. (Refer to 8 - ELECTRICAL/WIPERS/WASH-
ERS - FRONT/FRONT WIPER ARM - REMOVAL).
(4) Remove the cowl plenum cover/grille panel
from over the cowl plenum. (Refer to 23 - BODY/EX-
TERIOR/COWL GRILLE - REMOVAL).
(5) Disconnect the headlamp and dash wire har-
ness connector for the front wiper motor from the
motor pigtail wire connector (Fig. 15).
(6) Remove the two screws that secure the front
wiper module to the top of the cowl plenum panel at
the pivot brackets.
(7) Remove the two nuts that secure the front
wiper module to the two weld studs on the bottom of
the cowl plenum panel.
(8) Lift the front wiper module up from the cowl
plenum panel far enough to disengage the two lower
insulators from the weld studs on the bottom of the
plenum panel.(9) Remove the front wiper module from the cowl
plenum panel as a unit.
INSTALLATION
(1) Position the front wiper module to the cowl ple-
num as a unit (Fig. 15).
(2) Lower the front wiper module lower mounting
insulators over the two weld studs on the bottom of
the cowl plenum panel.
(3) Install the two screws that secure the front
wiper module to the top of the cowl plenum panel at
the pivot brackets. Tighten the screw on the driver
side, followed by the screw on the passenger side.
Tighten the screws to 8 N´m (72 in. lbs.).
(4) Install and tighten the two nuts that secure
the front wiper module to the two weld studs on the
bottom of the cowl plenum panel. Tighten the nuts to
8 N´m (72 in. lbs.).
(5) Reconnect the headlamp and dash wire harness
connector for the front wiper motor to the motor pig-
tail wire connector.
(6) Reinstall the cowl plenum cover/grille panel
over the cowl plenum. (Refer to 23 - BODY/EXTERI-
OR/COWL GRILLE - INSTALLATION).
(7) Close and latch the hood.
(8) Reinstall both front wiper arms onto the wiper
pivots. (Refer to 8 - ELECTRICAL/FRONT WIPERS/
WASHERS/FRONT WIPER ARM - INSTALLATION).
(9) Reconnect the battery negative cable.
FRONT WIPER/WASHER
SWITCH
DESCRIPTION
The front wiper and washer switches are integral
to the right (wiper) control stalk of the multi-function
switch. (Refer to 8 - ELECTRICAL/LAMPS/LIGHT-
ING - EXTERIOR/MULTI-FUNCTION SWITCH -
DESCRIPTION).
OPERATION
The front wiper and washer switches are integral
to the right (wiper) control stalk of the multi-function
switch. (Refer to 8 - ELECTRICAL/LAMPS/LIGHT-
ING - EXTERIOR/MULTI-FUNCTION SWITCH -
OPERATION).
Fig. 15 Front Wiper Module Remove/Install
1 - NUT (2)
2 - SCREW (2)
3 - FRONT WIPER MODULE
4 - STUD (2)
5 - WIRE HARNESS CONNECTOR
8R - 16 FRONT WIPERS/WASHERSKJ
FRONT WIPER MODULE (Continued)
of the washer pump/motor unit is connected to the
front nipple.
(10) Engage the ªWº clip that secures the front
bumper fascia to the front bumper support. This clip
is located behind the bumper support and below the
right front lamp unit.
(11) Reinstall the splash shield into the right front
fender wheel house. (Refer to 23 - BODY/EXTERIOR/
WHEELHOUSE SPLASH SHIELD - INSTALLA-
TION).
(12) Lower the vehicle.
(13) Install and tighten the screw that secures the
washer reservoir filler neck support to upper radiator
crossmember (Fig. 23). Tighten the screw to 7 N´m
(65 in. lbs.).
(14) Reinstall the air cleaner housing onto the top
of the right front fender wheel house. (Refer to 9 -
ENGINE/AIR INTAKE SYSTEM/AIR CLEANER
ELEMENT - INSTALLATION).
(15) Refill the washer reservoir with the washer
fluid drained from the reservoir during the removal
procedure.
(16) Reconnect the battery negative cable.
WIPER HIGH/LOW RELAY
DESCRIPTION
The wiper high/low relay is located in the Power
Distribution Center (PDC) in the engine compart-
ment near the battery. The wiper high/low relay is a
conventional International Standards Organization
(ISO) micro relay (Fig. 25). Relays conforming to theISO specifications have common physical dimensions,
current capacities, terminal patterns, and terminal
functions. The relay is contained within a small, rect-
angular, molded plastic housing and is connected to
all of the required inputs and outputs by five integral
male spade-type terminals that extend from the bot-
tom of the relay base.
The wiper high/low relay cannot be adjusted or
repaired and, if faulty or damaged, the unit must be
replaced.
OPERATION
The wiper high/low relay is an electromechanical
switch that uses a low current input from the Body
Control Module (BCM) to control a high current out-
put to the front wiper motor. The movable common
feed contact point is held against the fixed normally
closed contact point by spring pressure. When the
relay coil is energized, an electromagnetic field is
produced by the coil windings. This electromagnetic
field draws the movable relay contact point away
from the fixed normally closed contact point, and
holds it against the fixed normally open contact
point. When the relay coil is de-energized, spring
pressure returns the movable contact point back
against the fixed normally closed contact point. A
resistor is connected in parallel with the relay coil in
the relay, and helps to dissipate voltage spikes and
electromagnetic interference that can be generated as
the electromagnetic field of the relay coil collapses.
The wiper high/low relay terminals are connected
to the vehicle electrical system through a connector
receptacle in the Power Distribution Center (PDC).
The inputs and outputs of the wiper high/low relay
include:
²Common Feed Terminal- The common feed
terminal (30) is connected to the output of the wiper
on/off relay at all times through the wiper on/off
relay output circuit.
²Coil Ground Terminal- The coil ground termi-
nal (85) is connected to a control output of the Body
Control Module (BCM) through a front wiper high/
low relay control circuit. The BCM controls front
wiper motor operation by controlling a ground path
through this circuit.
²Coil Battery Terminal- The coil battery ter-
minal (86) receives battery current at all times from
a circuit breaker in the Junction Block (JB) through
a fused ignition switch output (run-acc) circuit.
²Normally Open Terminal- The normally open
terminal (87) is connected to the high speed brush of
the front wiper motor through a front wiper high/low
relay high speed output circuit, and is connected to
the high speed brush whenever the relay is ener-
gized.
Fig. 25 ISO Micro Relay
30 - COMMON FEED
85 - COIL GROUND
86 - COIL BATTERY
87 - NORMALLY OPEN
87A - NORMALLY CLOSED
KJFRONT WIPERS/WASHERS 8R - 23
WASHER RESERVOIR (Continued)
WIPER ON/OFF RELAY
DESCRIPTION
The wiper on/off relay is located in the Power Dis-
tribution Center (PDC) in the engine compartment
near the battery. The wiper on/off relay is a conven-
tional International Standards Organization (ISO)
micro relay (Fig. 28). Relays conforming to the ISO
specifications have common physical dimensions, cur-
rent capacities, terminal patterns, and terminal func-
tions. The relay is contained within a small,
rectangular, molded plastic housing and is connected
to all of the required inputs and outputs by five inte-
gral male spade-type terminals that extend from the
bottom of the relay base.
The wiper on/off relay cannot be adjusted or
repaired and, if faulty or damaged, the unit must be
replaced.
OPERATION
The wiper on/off relay is an electromechanical
switch that uses a low current input from the Body
Control Module (BCM) to control a high current out-put to the front wiper motor. The movable common
feed contact point is held against the fixed normally
closed contact point by spring pressure. When the
relay coil is energized, an electromagnetic field is
produced by the coil windings. This electromagnetic
field draws the movable relay contact point away
from the fixed normally closed contact point, and
holds it against the fixed normally open contact
point. When the relay coil is de-energized, spring
pressure returns the movable contact point back
against the fixed normally closed contact point. A
resistor is connected in parallel with the relay coil in
the relay, and helps to dissipate voltage spikes and
electromagnetic interference that can be generated as
the electromagnetic field of the relay coil collapses.
The wiper on/off relay terminals are connected to
the vehicle electrical system through a connector
receptacle in the Power Distribution Center (PDC).
The inputs and outputs of the wiper on/off relay
include:
²Common Feed Terminal- The common feed
terminal (30) is connected to the common feed termi-
nal of the wiper high/low relay at all times through
the wiper on/off relay output circuit.
²Coil Ground Terminal- The coil ground termi-
nal (85) is connected to a control output of the Body
Control Module (BCM) through a front wiper on/off
relay control circuit. The BCM controls front wiper
motor operation by controlling a ground path through
this circuit.
²Coil Battery Terminal- The coil battery ter-
minal (86) receives battery current at all times from
a circuit breaker in the Junction Block (JB) through
a fused ignition switch output (run-acc) circuit.
²Normally Open Terminal- The normally open
terminal (87) receives battery current at all times
from a circuit breaker in the Junction Block (JB)
through a fused ignition switch output (run-acc) cir-
cuit, and provides battery current to the front wiper
on/off relay output circuit whenever the relay is ener-
gized.
²Normally Closed Terminal- The normally
closed terminal (87A) is connected to the wiper park
switch in the front wiper motor through the front
wiper park switch sense circuit, and is connected to
the wiper park switch whenever the relay is de-ener-
gized.
The wiper on/off relay can be diagnosed using con-
ventional diagnostic tools and methods.
Fig. 28 ISO Micro Relay
30 - COMMON FEED
85 - COIL GROUND
86 - COIL BATTERY
87 - NORMALLY OPEN
87A - NORMALLY CLOSED
KJFRONT WIPERS/WASHERS 8R - 25
control stalk to a detent position selects the Off,
Delay, or On rear wiper system operating modes.
Rotating the control ring on the control stalk to
either of two Wash positions actuates the momentary
rear washer system switch. The multi-function
switch provides hard wired outputs to the rear wiper
module and the washer pump/motor unit for all rear
wiper and washer system functions.
The rear wiper and washer system will only oper-
ate when the ignition switch is in the Accessory or
On positions, and the rear flip-up glass and tailgate
ajar switches are closed. Battery current is directed
from a fuse in the Junction Block (JB) to the multi-
function switch through a fused ignition switch out-
put (run-acc) circuit. The internal circuitry of the
right (wiper) control stalk of the multi-function
switch then provides battery current signals through
a rear wiper on driver circuit and a rear wiper inter-
mittent driver circuit to the rear wiper module and
to the Body Control Module (BCM). The BCM uses
these rear wiper system inputs as a signal to lock the
rear flip-up glass and the tailgate to prevent the rear
flip-up glass or tailgate from being opened for as long
as the rear wiper is operating. The multi-function
switch circuitry also uses this battery current and a
ground circuit input to directly control the operation
and direction of the reversible electric washer pump/
motor unit.
A separate fuse in the JB provides battery current
to the electronic control circuitry of the rear wiper
module through a fused B(+) circuit. The rear wiper
module uses this fused B(+) input to park the rear
wiper blade off of the rear flip-up glass if the ignition
switch is turned to the Off position while the rear
wiper is operating, or if the ignition switch is turned
to the Off position before the rear wiper blade has
parked. However, if the ignition switch is turned to
the Off position while the rear wiper is operating,
then turned back On, the rear wiper switch must be
cycled to the Off position and back to the On or
Delay position before the rear wiper will operate
again. In addition, the rear wiper module receives an
input from the rear flip-up glass ajar switch on a
flip-up glass ajar switch sense circuit, which prevents
the rear wiper from operating when the flip-up glass
is not closed or fully latched.
The hard wired circuits and components of the rear
wiper and washer system may be diagnosed and
tested using conventional diagnostic tools and proce-
dures. Following are paragraphs that briefly describe
the operation of each of the rear wiper and washer
system operating modes.
CONTINUOUS WIPE MODE When the On posi-
tion of the control ring on the right (wiper) control
stalk of the multi-function switch is selected, the
multi-function switch circuitry directs a battery cur-rent signal to the rear wiper module through the
rear wiper on driver circuit, causing the rear wiper to
cycle continuously at a fixed speed.
INTERMITTENT WIPE MODE When the Delay
position of the control ring on the right (wiper) con-
trol stalk of the multi-function switch is selected, the
multi-function switch circuitry directs a battery cur-
rent signal to the rear wiper module through the
rear wiper intermittent driver circuit, causing the
rear wiper to cycle intermittently at a fixed delay
interval.
WASH MODE When the momentary Wash (after
On) position of the control ring on the right (wiper)
control stalk of the multi-function switch is selected,
the multi-function switch circuitry directs both bat-
tery current and ground to the washer pump/motor
unit, and a battery current signal to be provided to
the rear wiper module through the rear wiper on
driver circuit. This will cause the washer pump/mo-
tor unit to be energized and the rear wiper to cycle
continuously at a fixed speed for as long as the rear
Wash switch is held closed.
WIPE-AFTER-WASH MODE When the momentary
Wash (before Off) position of the control ring on the
right (wiper) control stalk of the multi-function
switch is selected, the multi-function switch circuitry
directs both battery current and ground to the
washer pump/motor unit, and a battery current sig-
nal to be provided to the rear wiper module through
the rear wiper on driver circuit. This will cause the
washer pump/motor unit to be energized and the rear
wiper to cycle continuously at a fixed speed for as
long as the rear Wash switch is held closed. When
the control ring is released to the Off position, the
washer pump/motor is de-energized, but the circuitry
within the rear wiper module will provide several
additional wipe cycles to complete the wipe-after-
wash mode cycle.
DIAGNOSIS AND TESTING - REAR WIPER &
WASHER SYSTEM
REAR WIPER SYSTEM
The diagnosis found here addresses an electrically
inoperative rear wiper system. If the rear wiper
motor operates, but the wiper does not move on the
rear flip-up glass, inspect the mechanical connection
between the rear wiper arm and the rear wiper
motor output shaft. If OK, replace the faulty rear
wiper module. If the wiper operates, but chatters,
lifts, or does not clear the glass, clean and inspect
the rear wiper system components as required. (Refer
to 8 - ELECTRICAL/REAR WIPERS/WASHERS -
INSPECTION) and (Refer to 8 - ELECTRICAL/
REAR WIPERS/WASHERS - CLEANING). Refer to
the appropriate wiring information. The wiring infor-
8R - 30 REAR WIPERS/WASHERSKJ
REAR WIPERS/WASHERS (Continued)
WIRING
TABLE OF CONTENTS
page page
WIRING DIAGRAM INFORMATION...... 8Wa-01-1
COMPONENT INDEX................. 8Wa-02-1
POWER DISTRIBUTION.............. 8Wa-10-1
JUNCTION BLOCK................... 8Wa-12-1
GROUND DISTRIBUTION............. 8Wa-15-1
BUS COMMUNICATIONS............. 8Wa-18-1
CHARGING SYSTEM................. 8Wa-20-1
STARTING SYSTEM................. 8Wa-21-1
FUEL/IGNITION SYSTEM............. 8Wa-30-1
TRANSMISSION CONTROL SYSTEM.... 8Wa-31-1
VEHICLE SPEED CONTROL........... 8Wa-33-1
ANTILOCK BRAKES.................. 8Wa-35-1
VEHICLE THEFT SECURITY SYSTEM.... 8Wa-39-1
INSTRUMENT CLUSTER.............. 8Wa-40-1
HORN/CIGAR LIGHTER/POWER OUTLET . 8Wa-41-1
AIR CONDITIONING-HEATER.......... 8Wa-42-1
AIRBAG SYSTEM................... 8Wa-43-1
INTERIOR LIGHTING................. 8Wa-44-1BODY CONTROL MODULE............ 8Wa-45-1
AUDIO SYSTEM.................... 8Wa-47-1
REAR WINDOW DEFOGGER........... 8Wa-48-1
OVERHEAD CONSOLE................ 8Wa-49-1
FRONT LIGHTING................... 8Wa-50-1
REAR LIGHTING.................... 8Wa-51-1
TURN SIGNALS..................... 8Wa-52-1
WIPERS........................... 8Wa-53-1
TRAILER TOW...................... 8Wa-54-1
POWER WINDOWS.................. 8Wa-60-1
POWER DOOR LOCKS............... 8Wa-61-1
POWER MIRRORS.................. 8Wa-62-1
POWER SEAT...................... 8Wa-63-1
POWER SUNROOF.................. 8Wa-64-1
SPLICE INFORMATION............... 8Wa-70-1
CONNECTOR PIN-OUTS.............. 8Wa-80-1
CONNECTOR/GROUND/
SPLICE LOCATION................. 8Wa-91-1 KJWIRING
8Wa-1