Page 287 of 1943
ENGINE ± 1NZ-FXE ENGINE
182EG04
Valve Angle 33.5
Water Jacket 46
ENGINE PROPER
1. Cylinder Head
The angle of the intake and exhaust valves is narrowed and set at 33.5 to permit a compact cylinder head.
As a result of installing the injector in the intake port of the cylinder head, the contact of the fuel against
the intake port wall has been minimized and fuel economy has been improved.
A water jacket has been provided between the exhaust port and the spark plug boss in order to maintain
the combustion chamber wall temperature uniform, thus improving the cooling performance of the com-
bustion chamber and the area around the spark plug.
Page 294 of 1943
ENGINE ± 1NZ-FXE ENGINE
182EG10
171EG17
From Heater
To Heater
To Radiator
From Radiator
Water Pump
Cylinder Head
Heater Core
Throttle Body
Radiator Cylinder Block Bypass
Passage
Water Pump
Thermostat53
COOLING SYSTEM
1. General
The cooling system is a pressurized, forced-circulation type.
A thermostat with a bypass valve is located on the water inlet housing to maintain suitable temperature
distribution in the cooling system.
The flow of the engine coolant makes a U-turn in the cylinder block to ensure a smooth flow of the engine
coolant.
The radiator for the engine and the A / C condenser have been integrated to minimize the space they occupy
in the engine compartment.
Page 303 of 1943

ENGINE ± 1NZ-FXE ENGINE62
ENGINE CONTROL SYSTEM
1. General
The engine control system for the 1NZ-FXE engine has following system.
System
Outline
SFI
Sequential Multiport
Fuel InjectionAn L-type SFI system directly detects the intake air volume with a hot-wire
type mass air flow meter.
ESA
Electronic Spark
AdvanceIgnition timing is determined by the ECM based on signals from various
sensors. The ECM corrects ignition timing in response to engine knocking.
VVT-i
Variable Valve
Timing-intelligentControls the intake camshaft to an optimal valve timing in accordance with
the engine condition.
ETCS-i
Electronic
Throttle Control
System-intelligentOptimally controls the throttle valve opening in accordance with the ECM,
and the conditions of the engine and the vehicle, and comprehensively
controls the ISC and cruise control system.
Fuel Pump ControlFuel pump operation is controlled by signal from the ECM.
To stop the fuel pump during operation of the SRS airbag.
Oxygen Sensor Heater
ControlMaintains the temperature of the oxygen sensors at an appropriate level to
increase accuracy of detection of the oxygen concentration in the exhaust gas.
Evaporative Emission
Control
The ECM controls the purge flow of evaporative emissions (HC) in the
charcoal canister in accordance with engine conditions.
Using 3 VSVs and a vapor pressure sensor, the ECM detects any
evaporative emission leakage occurring between the fuel tank and the
charcoal canister, and vapor reducing fuel tank through the changes in the
tank pressure. For details, see page 79.
Toyota HCAC System
The ECM controls the VSV (for Toyota HCAC System) to improve the clean
emission performance of the exhaust gas when the temperature of the TWC
is low. For details, see page 58.
Air Conditioning
Cut-Off ControlBy turning the air conditioning compressor OFF in accordance with the
engine condition, drivability is maintained.
Cooling Fan ControlRadiator cooling fan operation is controlled by signals from ECM based on
the engine coolant temperature sensor signal (THW).
HV Immobiliser
Prohibits fuel delivery, ignition, and starting the HV system if an attempt is
made to start the HV system with an invalid ignition key. For details, see page
80.
DiagnosisWhen the ECM detects a malfunction, the ECM diagnoses and memorizes
the failed section.
Fail-SafeWhen the ECM detects a malfunction, the ECM stops or controls the engine
according to the data already stored in memory.
Page 305 of 1943
ENGINE ± 1NZ-FXE ENGINE
ECM
EFI MAIN RELAY BATTERY+B BATT, BM
HTE
ETH
SPHV
ESTP
GO HV ECU
(Hybrid Vehicle Control ECU)
VACUUM SENSOR
(for TOYOTA HCAC SYSTEM)ACCELERATOR PEDAL
POSITION SENSORHCLS
VAPOR PRESSURE SENSORPTNK VPA 1, 2
DATA LINK CONNECTOR 3SIL
TC
AIR CONDITIONING ECU AIR CONDITIONING CUT-
OFF CONTROL
ACT
COOLING FAN RELAYCOOLING FAN
CONTROLFA N
VSV (for EVAP) EVAP CONTROLEVP1
VSV (for CANISTER
CLOSED VALVE) CCV
VSV (for PURGE FLOW
SWITCHING VALVE)TBP
METER ECU
AIR CONDITIONING ECU
DISPLAY ECU
BODY ECU
VSV
(for TOYOTA HCAC SYSTEM)
EFI MAIN RELAY
MALFUNCTION INDICATOR
LAMP MPX1
NEO
MPX2
HCC
MREL
W
64
Page 306 of 1943
ENGINE ± 1NZ-FXE ENGINE
182EG22
Circuit
Opening
Relay
VSV
(for
EVAP)
Intake
Air Temp.
SensorThrottle
Position
Sensor
ECMHV
ECU
Accelera-
tor Pedal
Position
Sensor
Cooling
Fan Relay
Throttle
Control
Motor
Igniter
Camshaft Position Sensor
Knock
Sensor
Mass Air
Flow Meter
VSV
(for Toyota
HCAC
System)Vacuum
Sensor
(for Toyota
HCAC
System)
Crankshaft
Position Sensor Injector
Camshaft
Timing
Oil Con-
trol Valve
Engine
Coolant
Te m p .
Sensor
TWC
Heated Oxygen
Sensor (Bank 1,
Sensor 1)
Heated Oxygen
Sensor (Bank 1,
Sensor 2)
Actuator (for HC
Adsorber)
TWC (with HC
Adsorber)
VSV (for Purge Flow
Switching Valve)
Vapor Pressure Sensor
VSV (for Canister Closed Valve)
Charcoal
Canister
Fuel Pump65
3. Engine Control System Diagram
Page 331 of 1943

THS (TOYOTA HYBRID SYSTEM)
182CH05
Stator
Rotor
Speed Sensor (Resolver)
MG1
182CH04
Stator
Rotor
Speed Sensor (Resolver)
MG2
182TH07
N.m
350
300
250
200
150
100
50
0
01000 30002000 50004000 60000 20 40
30
10 kW
Torque
Engine Speed (rpm)Output
Torque
Output
33
MG1 AND MG2 (MOTOR GENERATOR NO.1 AND NO.2)
DESCRIPTION
Both the MG1 and the MG2 are compact, lightweight, and highly efficient alternating current permanent
magnet synchronous type.
Serving as the source of supplemental motive force that provides power assistance to the engine as needed,
the electric motor helps the vehicle achieve excellent dynamic performance, including smooth start-offs
and acceleration. When the regenerative brake is activated, MG2 converts the vehicle's kinetic energy into
electrical energy, which is then stored in the HV battery.
MG1 recharges the HV battery and supplies electrical power to drive MG2. In addition, by regulating the
amount of electrical power generated (thus varying the generator's rpm), MG1 effectively controls the
continuously variable transmission function of the transaxle. MG1 also serves as the starter to start the
engine.
MG2 Specifications
TypePermanent Magnet
Motor (1CM)
Rated voltage [V]273.6
Maximum output [kW] (rpm)33 / (1040 5600)
Maximum torque [N.m (kgf.m) (rpm)350 / (0 400)
Amperage at maximum torque [A]351
Cooling systemWater-cooled
Performance Curve
Page 333 of 1943

THS (TOYOTA HYBRID SYSTEM)
182TH26
Inverter
Converter
182TH15
Inverter
HV
Battery
Ignition Signal
Ground
Voltage
Detection
Circuit
Voltage
Detection
Circuit
Bridge Circuit for MG2
Amperage
Sensor
Signal Processor /
Protective Function Processor
Bridge Circuit for MG1
Amperage
Sensor
MG2
HV ECU
MG1
182TH27
Reservoir Tank
Radiator
Water Pump35
INVERTER
1. General
The inverter is an electric power converter that
converts the direct current of the Hybrid vehicle's
high-voltage battery (DC 273.6 V) and the alter-
nating current of the MG1 and MG2.
Consisting of 2 three-phase bridge circuits for
MG1 and MG2, respectively, and each containing
6 power transistors, the inverter converts direct
current and three-phase alternating current. The ac-
tivation of the power transistors is controlled by the
HV ECU. In addition, the inverter transmits in-
formation that is needed for current control, such as
the output amperage or voltage, to the HV ECU.
Together with MG1 and MG2, the inverter is
cooled by the dedicated radiator of the coolant
system that is separate from that of the engine.
2. System Diagram
3. Cooling System
A cooling system via water pump for the inverter
and MG1, 2 has been added.
The HV ECU controls the water pump with cool-
ant temperature.
It is separated with the engine cooling system.
Page 334 of 1943

THS (TOYOTA HYBRID SYSTEM)
182TH26
Inverter
Converter
182TH17
F. L
MAINF.L DCDC12 V
Output
Auxiliary
Battery S34B20
Shielded 12 VInverter
SDC273.6 V
DC / DC Converter
Input Filter
20 V
Converter Control Circuit
HV ECU A / C ECUIG
IDH NODD 36
CONVERTER
1. General
The power source for auxiliary equipment of the
vehicle such as the lights, audio system, and the air
conditioner cooling fan, as well as the ECUs, is
based on a 12 V system. Because the THS genera-
tor outputs at 273.6 V, the converter is used to
transform the voltage from DC273.6 V to DC 12
V in order to recharge the auxiliary battery. The
converter is installed on the underside of the in-
verter.
2. Operation
The DC273.6 V input is initially converted into alternating current by the transistor bridge circuit and
transformed into a low voltage by the transformer. After this, the current is rectified, smoothed (into direct
current) and converted into DC12 V.
The voltage at the positive terminal of the auxiliary battery is monitored by the converter and is maintained
at a constant level. Consequently, the voltage of the auxiliary battery is unrelated to the engine rpm (even
if the engine is stopped) and to the auxiliary equipment (output current of converter).