Diagnostic Trouble Code Clearance 6-14. . . . .
Diagnostic Trouble Code Table 6-15. . . . . . . . .
Fail-safe Table 6-18. . . . . . . . . . . . . . . . . . . . . . .
Visual Inspection 6-19. . . . . . . . . . . . . . . . . . . . .
Engine Basic Inspection 6-20. . . . . . . . . . . . . . .
Engine Diagnosis Table 6-22. . . . . . . . . . . . . . .
Scan Tool Data 6-29. . . . . . . . . . . . . . . . . . . . . . .
Scan Tool Data Definitions 6-31. . . . . . . . . . . . .
Inspection of ECM (PCM) and Its Circuits 6-33
Voltage Check 6-33. . . . . . . . . . . . . . . . . . . . .
Resistance Check 6-37. . . . . . . . . . . . . . . . . .
Component Location 6-38. . . . . . . . . . . . . . . . . .
Table A-1 MIL Circuit Check
(Lamp does not come on) 6-39. . . . . . . . . . . .
Table A-2 MIL Circuit Check
(Lamp remains ON) 6-40. . . . . . . . . . . . . . . . . .
Table A-3 ECM (PCM) Power and Ground
Circuit Check 6-42. . . . . . . . . . . . . . . . . . . . . . .
DTC P0105 MAP Circuit Malfunction 6-44. . . .
DTC P0110 IAT Circuit Malfunction 6-46. . . . .
DTC P0115 ECT Circuit Malfunction 6-48. . . .
DTC P0120 Throttle Position Circuit
Malfunction 6-50. . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0121 Throttle Position Circuit
Range / Performance Problem 6-52. . . . . . . . .
DTC P0130 HO2S Circuit Malfunction
(Sensor-1) 6-54. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0133 HO2S Circuit Slow
Response (Sensor-1) 6-56. . . . . . . . . . . . . . . .
DTC P0135 HO2S Heater Circuit
Malfunction (Sensor-1) 6-57. . . . . . . . . . . . . . .
DTC P0136 HO2S Circuit Malfunction
(Sensor-2) 6-59. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0141 HO2S Heater Circuit
Malfunction (Sensor-2) 6-62. . . . . . . . . . . . . . .
DTC P0171 Fuel System Too Lean 6-64. . . . .
DTC P0172 Fuel System Too Rich 6-64. . . . . .
DTC P0300 Random Misfire Detected 6-68. . .
DTC P0301 Cylinder 1 Misfire Detected 6-68. DTC P0302 Cylinder 2 Misfire Detected 6- 68.
DTC P0303 Cylinder 3 Misfire Detected 6- 68.
DTC P0335 CKP Sensor Circuit
Malfunction 6- 72. . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0340 CMP Sensor Circuit
Malfunction 6- 74. . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0420 Catalyst System Efficiency
Below Threshold 6- 76. . . . . . . . . . . . . . . . . . . .
DTC P0443 Purge Control Valve Circuit
Malfunction 6- 79. . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0480 Radiator Fan Control
System Malfunction 6- 80. . . . . . . . . . . . . . . . . .
DTC P0500 Vehicle Speed Sensor
Malfunction (M / T) 6- 82. . . . . . . . . . . . . . . . . . .
DTC P0500 Vehicle Speed Sensor
Malfunction (A / T) 6- 84. . . . . . . . . . . . . . . . . . .
DTC P0505 Idle Control System
Malfunction 6- 86. . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0510 Closed Throttle Position
Switch Malfunction 6- 88. . . . . . . . . . . . . . . . . .
DTC P0601 Internal Control Module
Memory Check Sum Error 6- 89. . . . . . . . . . . .
DTC P1250 EFE Heater Circuit
Malfunction 6- 90. . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1450 Barometric Pressure
Sensor Low / High Input 6- 92. . . . . . . . . . . . . .
DTC P1451 Barometric Pressure Sensor
Performance Problem 6- 92. . . . . . . . . . . . . . . .
DTC P1500 Engine Starter Signal
Circuit Malfunction 6- 93. . . . . . . . . . . . . . . . . . .
DTC P1510 ECM (PCM) Back-up Power
Supply Malfunction 6- 94. . . . . . . . . . . . . . . . . .
Table B-1 Fuel Injector Circuit Check 6- 96. . . .
Table B-2 Fuel Pump and Its Circuit
Check 6- 98. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table B-3 Fuel Pressure Check 6-100. . . . . . . . .
Table B-4 A / C Signal Circuits Check 6-102. . . .
Table B-5 Power Steering Pressure
Switch Signal Circuit Check 6-103. . . . . . . . . . .
SPECIAL TOOL6-104 . . . . . . . . . . . . . . . . . . . . . . .
6-2 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
1. No.1 cylinder
2. No.2 cylinder
3. No.3 cylinder
123
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-3
GENERAL INFORMATION
STATEMENT ON CLEANLINESS AND CARE
An automobile engine is a combination of many machined, honed,
polished and lapped surfaces with tolerances that are measured in
the thousands of an millimeter (ten thousands of an inch).
Accordingly, when any internal engine parts are serviced, care and
cleanliness are important.
Throughout this section, it should be understood that proper clean-
ing and protection of machined surfaces and friction areas is part
of the repair procedure. This is considered standard shop practice
even if not specifically stated.
A liberal coating of engine oil should be applied to friction areas
during assembly to protect and lubricate the surfaces on initial op-
eration.
Whenever valve train components, pistons, piston rings, con-
necting rods, rod bearings, and crankshaft journal bearings are
removed for service, they should be retained in order.
At the time of installation, they should be installed in the same
locations and with the same mating surfaces as when removed.
Battery cables should be disconnected before any major work is
performed on the engine.
Failure to disconnect cables may result in damage to wire har-
ness or other electrical parts.
Throughout this manual, the four cylinders of the engine are iden-
tified by numbers; No.1 (1), No.2 (2) and No.3 (3) counted from
crankshaft pulley side to flywheel side.
GENERAL INFORMATION ON ENGINE SERVICE
THE FOLLOWING INFORMATION ON ENGINE SERVICE
SHOULD BE NOTED CAREFULLY, AS IT IS IMPORTANT IN PRE-
VENTING DAMAGE, AND IN CONTRIBUTING TO RELIABLE EN-
GINE PERFORMANCE.
When raising or supporting engine for any reason, do not use a
jack under oil pan. Due to small clearance between oil pan and
oil pump strainer, jacking against oil pan may cause it to be bent
against strainer resulting in damaged oil pick-up unit.
It should be kept in mind, while working on engine, that 12-volt
electrical system is capable of violent and damaging short cir-
cuits.
When performing any work where electrical terminals can be
grounded, ground cable of the battery should be disconnected at
battery.
Any time the air cleaner, throttle body or intake manifold is re-
moved, the intake opening should be covered. This will protect
against accidental entrance of foreign material which could follow
intake passage into cylinder and cause extensive damage when
engine is started.
HOSE CONNECTION
Clamp securely at a position 3 to
7mm (0.12–0.27 in.) from hose end. With short pipe, fit hose as far as it reaches pipe joint as
shown.
Hose
Pipe
ClampClamps securely at a position
3 to 7 mm (0.12–0.27 in.)
from hose end.
With following type pipe, fit hose as far as its peripheral
projection as shown.
Clamp securely at a position
3 to 7 mm (0.12–0.27 in.)
from hose end.
With bent pipe, fit hose as its bent part as shown or till pipe
is about 20 to 30 mm (0.79–1.18 in.) into the hose.
Clamp securely at a
position 3 to 7 mm
(0.12–0.27 in.) from hose
end.
With straight pipe, fit hose till pipe is, about 20 to 30 mm
(0.79–1.18 in.) into the hose.
Hose
20 to 30 mm
(0.79–1.18 in.)
Clamp
6-4 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
PRECAUTION ON FUEL SYSTEM SERVICE
Work must be done with no smoking, in a well-ventilated area and
away from any open flames.
As fuel feed line (between fuel pump and fuel delivery pipe) is still
under high fuel pressure even after engine was stopped, loosen-
ing or disconnecting fuel feed line directly may cause dangerous
spout of fuel to occur where loosened or disconnected.
Before loosening or disconnecting fuel feed line, make sure to re-
lease fuel pressure according to “FUEL PRESSURE RELIEF
PROCEDURE”. A small amount of fuel may be released after the
fuel line is disconnected. In order to reduce the chance of person-
al injury, cover the fitting to be disconnected with a shop cloth. Put
that cloth in an approved container when disconnection is com-
pleted.
Never run engine with fuel pump relay disconnected when engine
and exhaust system are hot.
Fuel or fuel vapor hose connection varies with each type of pipe.
When reconnecting fuel or fuel vapor hose, be sure to connect
and clamp each hose correctly referring to left figure Hose Con-
nection.
After connecting, make sure that it has no twist or kink.
When installing injector or fuel delivery pipe, lubricate its O-ring
with spindle oil or gasoline.
When connecting fuel pipe flare nut, first tighten flare nut by hand
and then tighten it to specified torque.
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-5
FUEL PRESSURE RELIEF PROCEDURE
CAUTION:
This work must not be done when engine is hot. If done so,
it may cause adverse effect to catalyst.
After making sure that engine is cold, release fuel pressure as fol-
lows.
1) Place transmission gear shift lever in “Neutral” (Shift selector le-
ver to “P” range for A / T model), set parking brake, and block
drive wheels.
2) Remove relay box cover.
3) Disconnect fuel pump relay (1) from relay box (2).
4) Remove fuel filler cap to release fuel vapor pressure in fuel tank
and then reinstall it.
5) Start engine and run it till it stops for lack of fuel. Repeat cranking
engine 2-3 times for about 3 seconds each time to dissipate fuel
pressure in lines. Fuel connections are now safe for servicing.
6) Upon completion of servicing, connect fuel pump relay to relay
box and install relay box cover.
FUEL LEAKAGE CHECK PROCEDURE
After performing any service on fuel system, check to make sure
that there are no fuel leakages as follows.
1) Turn ON ignition switch for 2 seconds (to operate fuel pump) and
then turn it OFF.
Repeat this (ON and OFF) 3 or 4 times and apply fuel pressure
to fuel line. (till fuel pressure is felt by hand placed on fuel feed
hose.)
2) In this state, check to see that there are no fuel leakages from
any part of fuel system.
6-6 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
ENGINE DIAGNOSIS
GENERAL DESCRIPTION
This vehicle is equipped with an engine and emission control system which are under control of ECM (PCM).
The engine and emission control system in this vehicle are controlled by ECM (PCM). ECM (PCM) has an On-
Board Diagnostic system which detects a malfunction in this system and abnormality of those parts that influence
the engine exhaust emission. When diagnosing engine troubles, be sure to have full understanding of the outline
of “On-Board Diagnostic System” and each item in “Precaution in Diagnosing Trouble” and execute diagnosis ac-
cording to “ENGINE DIAGNOSTIC FLOW TABLE”.
There is a close relationship between the engine mechanical, engine cooling system, ignition system, exhaust sys-
tem, etc. and the engine and emission control system in their structure and operation. In case of an engine trouble,
even when the malfunction indicator lamp (MIL) doesn’t turn ON, it should be diagnosed according to this flow table.
ON-BOARD DIAGNOSTIC SYSTEM
ECM (PCM) in this vehicle has following functions.
When the ignition switch is turned ON with the engine at a stop,
malfunction indicator lamp (MIL) (1) turns ON to check the bulb
of the malfunction indicator lamp (1).
When ECM (PCM) detects a malfunction which gives an adverse
effect to vehicle emission while the engine is running, it makes the
malfunction indicator lamp (1) in the meter cluster of the instru-
ment panel turn ON or flash (flashing only when detecting a mis-
fire which can cause damage to the catalyst) and stores the mal-
function area in its memory.
(If it detects that continuously 3 driving cycles are normal after de-
tecting a malfunction, however, it makes MIL (1) turn OFF al-
though DTC stored in its memory will remain.)
As a condition for detecting a malfunction in some areas in the
system being monitored by ECM (PCM) and turning ON the mal-
function indicator lamp (1) due to that malfunction, 2 driving cycle
detection logic is adopted to prevent erroneous detection.
When a malfunction is detected, engine and driving conditions
then are stored in ECM (PCM) memory as freeze frame data. (For
the details, refer to description on Freeze frame data.)
It is possible to communicate by using not only SUZUKI scan tool
(Tech-1) (2) but also generic scan tool. (Diagnostic information
can be accessed by using a scan tool.)
An Example of Freeze Frame Data
1. Trouble Code P0102 (1st)
2. Engine Speed 782 RPM
3. Eng Cool Tmp. 80C
4. Vehicle Spd. 0 km/h
5. MAP Sensor 39 kPa
6. St. Term FT1– 0.8% Lean
7. Lg. Term FT1– 1.6% Lean
8. Fuel 1 Stat. Closed Loop
9. Fuel 2 Stat. Not used
10. Load value 25.5%
1st, 2nd or 3rd in parentheses here represents which
position in the order the malfunction is detected.
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-7
Warm-up Cycle
A warm-up cycle means sufficient vehicle operation such that the
coolant temperature has risen by at least 22C (40F) from engine
starting and reaches a minimum temperature of 70C (160F).
Driving Cycle
A “Driving Cycle” consists of engine startup, driving mode where a
malfunction would be detected if present and engine shutoff.
2 Driving Cycles Detection Logic
The malfunction detected in the first driving cycle is stored in ECM
(PCM) memory (in the form of pending DTC and freeze frame data)
but the malfunction indicator lamp does not light at this time. It lights
up at the second detection of same malfunction also in the next driv-
ing cycle.
Pending DTC
Pending DTC means a DTC detected and stored temporarily at 1
driving cycle of the DTC which is detected in the 2 driving cycles
detection logic.
Freeze Frame Data
ECM (PCM) stores the engine and driving conditions (in the from
of data as shown at the left) at the moment of the detection of a mal-
function in its memory. This data is called “Freeze frame data”.
Therefore, it is possible to know engine and driving conditions (e.g.,
whether the engine was warm or not, where the vehicle was running
or stopped, where air / fuel mixture was lean or rich) when a mal-
function was detected by checking the freeze frame data. Also,
ECM (PCM) has a function to store each freeze frame data for three
different malfunctions in the order as the malfunction is detected.
Utilizing this function, it is possible to know the order of malfunctions
that have been detected. Its use is helpful when rechecking or diag-
nosing a trouble.
Priority of freeze frame data:
ECM (PCM) has 4 frames where the freeze frame data can be
stored. The first frame stores the freeze frame data of the malfunc-
tion which was detected first. However, the freeze frame data
stored in this frame is updated according to the priority described
below. (If malfunction as described in the upper square “1” below
is detected while the freeze frame data in the lower square “2” has
been stored, the freeze frame data “2” will be updated by the freeze
frame data “1”.)
PRIORITY
FREEZE FRAME DATA IN FRAME 1
1
Freeze frame data at initial detection of malfunction
among misfire detected (P0300-P0303), fuel
system too lean (P0171) and fuel system too rich
(P0172)
2Freeze frame data when a malfunction other than
those in “1” above is detected
Body ground
ECM (PCM) ground
Serial data line
(K line of ISO 9141)SUZUKI
serial data
line
6-8 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
In the 2nd through the 4th frames, the freeze frame data of each
malfunction is stored in the order as the malfunction is detected.
These data are not updated.
Shown in the table below are examples of how freeze frame data
are stored when two or more malfunctions are detected.
FRAMEFRAME 1FRAME 2FRAME 3FRAME 4FRAME
MALFUNCTION
DETECTED ORDER
FREEZE FRAME
DATA
to be updated1st FREEZE
FRAME DATA2nd FREEZE
FRAME DATA3rd FREEZE
FRAME DATA
No malfunctionNo freeze frame data
1P0400 (EGR)
detectedData at P0400
detectionData at P0400
detection––
2P0171 (Fuel
system) detectedData at P0171
detectionData at P0400
detectionData at P0171
detection–
3P0300 (Misfire)
detectedData at P0171
detectionData at P0400
detectionData at P0171
detectionData at P0300
detection
4P0301 (Misfire)
detectedData at P0171
detectionData at P0400
detectionData at P0171
detectionData at P0300
detection
Freeze frame data clearance:
The freeze frame data is cleared at the same time as clearance of
diagnostic trouble code (DTC).
Data Link Connector (DLC)
DLC (1) is in compliance with SAEJ1962 in its installation position,
the shape of connector and pin assignment.
Serial data line (K line of ISO 9141) is used for SUZUKI scan tool
(Tech-1) or generic scan tool to communicate with ECM (PCM).
SUZUKI serial data line is used for SUZUKI scan tool (Tech-1) to
communicate with ABS control module and air bay SDM.
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-9
PRECAUTION IN DIAGNOSING TROUBLE
Don’t disconnect couplers from ECM (PCM), battery cable from
battery, ECM (PCM) ground wire harness from engine or main
fuse before confirming diagnostic information (DTC, freeze frame
data, etc.) stored in ECM (PCM) memory. Such disconnection will
erase memorized information in ECM (PCM) memory.
Diagnostic information stored in ECM (PCM) memory can be
cleared as well as checked by using SUZUKI scan tool (Tech-1)
or generic scan tool. Before using scan tool, read its Operator’s
(Instruction) Manual carefully to have good understanding as to
what functions are available and how to use it.
Priorities for diagnosing troubles.
If two or more DTCs are stored, proceed to the flow table of the
DTC which has detected earliest in the order and follow the
instruction in that table.
If no instructions are given, troubleshoot diagnostic trouble codes
according to the following priorities.
1. Diagnostic trouble codes (DTCs) other than DTC P0171 /
P0172 (Fuel system too lean / too rich) and DTC P0300 /
P0301 / P0302 / P0303 (Misfire detected)
2. DTC P0171 / P0172 (Fuel system too lean / too rich)
3. DTC P0300 / P0301 / P0302 / P0303 (Misfire detected)
Be sure to read “Precautions for Electrical Circuit Service” in Sec-
tion 0A before inspection and observe what is written there.
ECM (PCM) Replacement
When substituting a known-good ECM (PCM), check for following
conditions. Neglecting this check may cause damage to a known-
good ECM (PCM).
–Resistance value of all relays, actuators is as specified respec-
tively.
–MAP sensor and TP sensor are in good condition and none of
power circuits of these sensors is shorted to ground.