3.2.3 OTHER CONTROLS
CHARGING SYSTEM
The charging system is turned on when the
engine is started and ASD relay energized. When
the ASD relay is on, ASD output voltage is supplied
to the ASD sense circuit at the PCM. This voltage is
connected in some cases, through the PCM and
supplied to one of the generator field terminals
(Gen Source +). All others, the Gen field is con-
nected directly to the ASD output voltage. The
amount of current produced by the generator is
controlled by the Electronic Voltage Regulator
(EVR) circuitry, in the PCM. A battery temperature
sensor, located either in the battery tray, using the
ambient sensor, or in the PCM itself, is used to
sense battery temperature. This temperature along
with sensed line voltage, is used by the PCM to vary
the battery charging rate. This is done by cycling
the ground path to the other generator field termi-
nal (Gen field driver).
SPEED CONTROL SYSTEM
The PCM controls vehicle speed by operation of
the speed control servo vacuum and vent solenoids.
Energizing the vacuum solenoid applies vacuum to
the servo to increase throttle position. Operation of
the vent solenoid slowly releases the vacuum allow-
ing throttle position to decrease. A special dump
solenoid allows immediate release of throttle posi-
tion caused by braking, cruise control switch turned
off, shifting into neutral, excessive RPM (tires spin-
ning) or ignition key off.
3.2.4 PCM OPERATING MODES
As input signals to the powertrain control module
(PCM) change, the PCM adjusts its response to
output devices. For example, the PCM must calcu-
late a different injector pulse width and ignition
timing for idle than it does for wide open throttle.
There are several different modes of operation that
determine how the PCM responds to the various
input signals.
There are two types of engine control operation:
open loopandclosed loop.
In open loop operation, the PCM receives input
signals and responds according to preset program-
ming. Inputs from the heated oxygen sensors are
not monitored.
In closed loop operation, the PCM monitors the
inputs from the heated oxygen sensors. This input
indicates to the PCM whether or not the calculated
injector pulse width results in the ideal air-fuel
ratio of 14.7 parts air to 1 part fuel. By monitoring
the exhaust oxygen content through the oxygen
sensor, the PCM can fine tune injector pulse width.
Fine tuning injector pulse width allows the PCM toachieve the lowest emission levels while maintain-
ing optimum fuel economy.
The engine start-up (crank), engine warm-up,
and wide open throttle modes are open loop modes.
Under most operating conditions, closed loop modes
occur with the engine at operating temperature.
IGNITION SWITCH ON (ENGINE OFF) MODE
When the ignition switch activates the fuel injec-
tion system, the following actions occur:
1. The PCM determines atmospheric air pressure
from the MAP sensor input to determine basic
fuel strategy.
2. The PCM monitors the engine coolant tempera-
ture sensor and throttle position sensor input.
The PCM modifies fuel strategy based on this
input.
When the key is in the ªonº position and the
engine is not running (zero rpm), the auto shut-
down relay and fuel pump relay are not energized.
Therefore, voltage is not supplied to the fuel pump,
ignition coil, and fuel injectors.
Engine Start-up Mode -This is an open loop
mode. The following actions occur when the starter
motor is engaged:
1. The auto shutdown and fuel pump relays are
energized. If the PCM does not receive the cam-
shaft and crankshaft signal within approxi-
mately one second, these relays are de-
energized.
2. The PCM energizes all fuel injectors until it
determines crankshaft position from the cam-
shaft and crankshaft signals. The PCM deter-
mines crankshaft position within one engine
revolution. After the crankshaft position has
been determined, the PCM energizes the fuel
injectors in sequence. The PCM adjusts the in-
jector pulse width and synchronizes the fuel
injectors by controlling the fuel injectors' ground
paths.
3. Once the engine idles within 64 rpm of its target
engine speed, the PCM compares the current
MAP sensor value with the value received dur-
ing the ignition switch on (zero rpm) mode. A
diagnostic trouble code is written to PCM mem-
ory if a minimum difference between the two
values is not found.
Once the auto shutdown and fuel pump relays
have been energized, the PCM determines the fuel
injector pulse width based on the following:
± engine coolant temperature
± manifold absolute pressure
± intake air temperature
± engine revolutions
± throttle position
4
GENERAL INFORMATION
ProCarManuals.com
Symptom:
P-0125 CLOSED LOOP TEMP NOT REACHED
When Monitored and Set Condition:
P-0125 CLOSED LOOP TEMP NOT REACHED
When Monitored: After engine is started, for ten minutes.
Set Condition: The engine temperature does not go above 10 degrees C (50 degrees F) by
13 minutes after the engine is started for 2 consecutive trips.
POSSIBLE CAUSES
PCM CONNECTOR AND TERM DAM, PSHD OUT, OR MISWIRED
ECT SENSOR CONN AND TERM DAM, PSHD OUT, MISWIRED
ECT SENSOR RESISTANCE >=11.00 K OHMS
PCM DEFECTIVE
THERMOSTAT DEFECTIVE
TEST ACTION APPLICABILITY
1 Turn the ignition on.
With the DRB, read the FREEZE FRAME DATA.
Using the FREEZE FRAME DATA, attempt to duplicate the condition that has set
this fault.
Note that the DTC is a 2 trip failure.
Does P0121 reset?All
Ye s®Go To 3
No®Go To 2
2 The conditions required to set the DTC are no longer present.
Ensure the engine cooling system is operating properly, coolant level is at specifica-
tion, and no external or internal coolant leaks. Refer to the appropriate service
category for cooling system information.
Is the Cooling System operating correctly?All
Ye s®Test complete
No®Repair as necessary.
Perform Powertrain verification Test VER-5A
3 Ignition off.
Disconnect the ECT Sensor Connector.
Note: Check Connectors - clean/repair as necessary.
Is any Terminal damaged, pushed out, or miswired?All
Ye s®Clean or repair connector as necessary.
Perform Powertrain Verification Test VER-5A.
No®Go To 4
51
DRIVEABILITY
ProCarManuals.com