instrument panel.
(
2) - See Figs. 1 and 2.
(
3) - Engine ID is eighth character of VIN.
(
4) - Fuel system is a Sequential Fuel Injection (SFI) system.
(
5) - Ignition timing is computer-controlled.
(
6) - This system may also be referred to as distributor ignition.
(
7) - This system may also be referred to as distributorless
ignition.
\
\
\
\
\
\
\
\f
VIN DEFINITION
J A 3 A Y 3 6 A 1 W U 0 0 0 0 0 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 - Indicates Nation of Origin.
2 - Indicates Manufacturer.
3 - Indicates Vehicle Type.
4 - Indicates Restraint System. ( 1)
5 - Indicates Model.
6 - Indicates Vehicle Series.
7 - Indicates Body Type.
8 - Indicates Engine Type and Make.
9 - Indicates Check Digit.
10 - Indicates Model Year.
11 - Indicates Assembly Plant.
12-17 - Indicates Serial Number.
( 1) - On Montero & Montero Sport, fourth character of VIN indicates
GVWR.
VIN CODE/YEAR APPLICATIONS
VIN CODE/YEAR APPLICATION TABLE\
\
\
\
\
\
VIN Code Model Year
T ................................................... 1996
V ................................................... 1997
W ................................................... 1998
\
\
\
\
\
\
ENGINE CODE LOCATIONS
Fig. 1: Engine Code Locations (Diamante)
Courtesy of Chrysler Corp.
Threads damaged ......... A .. Require repair or replacement.
Threads stripped (threads
missing) ............... A ............ Require replacement.
Wire lead conductors
exposed ................ B .. Require repair or replacement.
Wire lead corroded ...... A .. Require repair or replacement.
Wire lead open .......... A .. Require repair or replacement.
Wire lead shorted ....... A .. Require repair or replacement.
(1) - Refer to manufacturer's diagnostic trouble code
procedure and require repair or replacement of
affected component(s).
( 2) - Determine cause and correct prior to repair or
replacement of part.
( 3) - Determine source of contamination, such as engine coolant,
fuel, metal particles, or water. Require repair or
replacement. Check for accepted cleaning procedure.
( 4) - Inoperative includes intermittent operation or out of
OEM specification. Some components may be serviceable.
\
\
\
\
\
\
\
COOLANT
COOLANT INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Acidity (pH) incorrect .. 1 ........... Suggest correction or
replacement.
Contaminated ............ B ...... ( 1) Require replacement or
recycling. Further
inspection required.
Level incorrect ......... B .......... ( 2) Require filling to
proper level.
Maintenance intervals ... 3 ........ ( 3) Suggest replacement.
Mixture incorrect ....... B ........... Require correction or
replacement.
Type incorrect .......... B ............ Require replacement.
( 1) - Determine source of contamination and require correction
prior to coolant replacement.
( 2) - Determine source of incorrect level and suggest repair.
( 3) - The system should be drained and/or flushed and
refilled with correct coolant according to OEM
recommended service interval and procedures.
\
\
\
\
\
\
\
COOLING FAN BLADES
COOLING FAN BLADE INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Application incorrect ... B ............ Require replacement.
Attaching hardware
broken ................. A ... Require repair or replacement
of hardware.
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware not
functioning ............ A ... Require repair or replacement
of hardware.
NOTE: Copied Vehicle Speed Sensors from Engine UIGs & added
Air Gap incorrect, loose, and wire lead misrouted. For
"contaminated" removed coolant & fuel examples from note.
SPEED SENSOR INSPECTION
\
\
\
\
\
\
\
Condition Code Procedure
Air gap incorrect ....... B ....... (1) Require adjustment or
replacement.
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware
threads damaged ........ A ... Require repair or replacement
of hardware.
Attaching hardware
threads stripped
(threads missing) ...... A .. Require repair or replacement
of hardware.
Connector broken ........ A .. Require repair or replacement.
Connector (Weatherpack
type) leaking ........... A .. Require repair or replacement.
Connector melted ........ A ........... ( 2) Require repair or
replacement.
Connector missing ....... C ............ Require replacement.
Contaminated ............ A ........... ( 3) Require repair or
replacement.
Inoperative ............. B ........... ( 4) Require repair or
replacement. Further
inspection required.
Lead routing incorrect .. B ..... Require rerouting according
to vehicle manufacturer's
specifications.
Leaking ................. A .. Require repair or replacement.
Loose ................... A .. Require repair or replacement.
Missing ................. C ............ Require replacement.
Resistance out of
specification .......... B .. Require repair or replacement.
Sensor housing cracked .. 2 ............ Suggest replacement.
Terminal broken ......... A .. Require repair or replacement.
Terminal burned,
affecting performance .. A ........... ( 2) Require repair or
replacement.
Terminal burned, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal corroded,
affecting performance .. A .. Require repair or replacement.
Terminal corroded, not
affecting performance .. 2 .. Suggest repair or replacement.
Terminal loose,
affecting performance .. B .. Require repair or replacement.
Terminal loose, not
affecting performance .. 1 .. Suggest repair or replacement.
Threads damaged ......... A .. Require repair or replacement.
Threads stripped
(threads missing) ...... A ............ Require replacement.
Wire lead conductors
exposed ................ B .. Require repair or replacement.
Wire lead corroded ...... A .. Require repair or replacement.
Wire lead misrouted ..... B . Require re-routing according to
vehicle manufacturer's
COMPUTER RELEARN PROCEDURES
1998 Mitsubishi Montero
GENERAL INFORMATION
Computer Relearn Procedures
All Models
* PLEASE READ THIS FIRST *
The following general procedures are to be used if
driveability problems are encountered after power loss or battery has
been disconnected. These procedures may provide an aid in eliminating
these problems.
To reduce the possibility of complaints, after any service
which requires battery power to be disconnected, vehicle should be
road tested.
COMPUTER RELEARN PROCEDURES
Vehicles equipped with engine or transmission computers may
require a relearn procedure after vehicle battery is disconnected.
Many vehicle computers memorize and store vehicle operation patterns
for optimum driveability and performance. When vehicle battery is
disconnected, this memory is lost. The computer will use default data
until new data from each key start is stored. As computer memorizes
vehicle operation for each new key start, driveability is restored.
Vehicle computers may memorize vehicles operation patterns for 40 of
more key starts.
Customers often complain of driveability problems during
relearn stage because vehicle acts differently then before being
serviced. Depending on type and make of vehicle and how it is
equipped, the following complaints (driveability problems) may exist:
* Harsh Or Poor Shift Quality
* Rough Or Unstable Idle
* Hesitation Or Stumble
* Rich Or Lean Running
* Poor Fuel Mileage
These symptoms and complaints should disappear after a number
of drive cycles have been memorized. To reduce the possibility of
complaints, after any service which requires battery power to be
disconnected, vehicle should be road tested. If a specific relearn
procedure is not available, the following procedure may be used:
Automatic Transmission
* Set parking brake, start engine in "P" or "N" position.
Warm-up vehicle to normal operating temperature or until
cooling fan cycles.
* Allow vehicle to idle for one minute in "N" position. Select
"D" and allow engine to idle for one minute.
* Accelerate at normal throttle position (20-50%) until vehicle
shifts into top gear.
* Cruise at light to medium throttle.
* Decelerate to a stop, allowing vehicle to downshift, and use
brakes normally.
* Process may be repeated as necessary.
Manual Transmission
pressure regulator diaphragm opens relief valve, allowing pressure to
bleed off through fuel return line, reducing fuel pressure.
As engine manifold vacuum decreases (open throttle), fuel
pressure regulator diaphragm closes valve, preventing pressure from
bleeding off through fuel return line, increasing fuel pressure.
FUEL CONTROL
Fuel Injectors
Fuel is supplied to engine through electronically pulsed
(timed) injector valves located on fuel rail(s). PCM controls amount\
of fuel metered through injectors based on information received from
sensors.
IDLE SPEED
Air Conditioning (A/C) Relay
When A/C is turned on with engine at idle, PCM signals IAC
motor to increase idle speed. To prevent A/C compressor from switching
on before idle speed has increased, PCM momentarily opens A/C relay
circuit.
Idle Air Control (IAC) Motor
Motor controls pintle-type air valve to regulate volume of
intake air at idle.
During start mode, PCM controls idle intake air volume
according to Engine Coolant Temperature (ECT) sensor input. After
starting, with idle position switch activated (throttle closed), fast
idle speed is controlled by IAC motor and fast idle air control valve
(if equipped).
When idle switch is deactivated (throttle open), IAC motor
moves to a preset position in accordance with ECT sensor input.
PCM signals IAC motor to increase engine RPM in the following
situations: A/T (if applicable) is shifted from Neutral to Drive, A/C
is turned on, or power steering pressure reaches a preset value.
IGNITION SYSTEMS
DIRECT IGNITION SYSTEM (DIS)
Depending on number of cylinders, ignition system is a 2 or
3-coil, distributorless ignition system. On Eclipse (Turbo) and DOHC
V6 engines, Camshaft Position (CMP) sensor is located beside camshaft,\
in front of engine. On all other engines equipped with DIS, CMP sensor
is a separate unit mounted in place of distributor. On DOHC 4-
cylinder, DOHC V6 and 1.8L 4-cylinder engines with California
emissions, Crankshaft Position (CKP) sensor is located beside
crankshaft, in front of engine. PCM determines TDC based on pulse
signals received from sensors and then controls MFI and ignition
timing.
Power Transistors & Ignition Coils
Based on crankshaft position and CMP sensor inputs, PCM
controls timing and directly activates each power transistor to fire
coils. On 4-cylinder engines, power transistor "A" controls primary
current of ignition coil "A" to fire spark plugs on cylinders No. 1
and No. 4 at the same time. Power transistor "B" controls primary
current of ignition coil "B" to fire spark plugs on cylinders No. 2
and No. 3 at the same time. On V6 engines, companion cylinders No. 1
and 4, 2 and 5, and 3 and 6 are fired together.
On all models, although each coil fires 2 plugs at the same
time, ignition takes place in only one cylinder, since the other
Fig. 3: Typical Thermostatic Air Cleaner System
FUEL EVAPORATIVE SYSTEM (EVAP)
The EVAP system allows for proper fuel system ventilation
while preventing fuel vapors from reaching the atmosphere. This means
that vapors must be caught and stored while the engine is off, which
is when most fuel evaporation occurs. When the engine is started,
these fuel vapors can be removed from storage and burned. In most
systems, storage is provided by an activated charcoal (or carbon)
canister. See Fig. 4. On a few early systems, charcoal canisters are
not used. Instead, fuel vapors are vented into the PCV system and
stored inside the crankcase.
The main components of a fuel evaporation system are a sealed
fuel tank, a liquid-vapor separator and vent lines to a vapor-storing
canister filled with activated charcoal. The filler cap is normally
not vented to the atmosphere, but is fitted with a valve to allow both
pressure and vacuum relief.
Although a few variations do exist between manufacturers,
basic operation is the same for all systems. Check for presence of
vapor storage canister or crankcase storage connections when required.
Ensure required hoses, solenoids, etc., are present and connected
properly. Check for proper type fuel tank cap. Check for any non-OEM
or auxiliary fuel tanks for compliance and the required number of
evaporation canisters.
Fig. 4: Typical Fuel Evaporative System
CATALYTIC CONVERTERS
Oxidation Catalyst (OC)
This type of converter is the most common. It may use pellets
or monolith medium, depending upon application. See Fig. 5. Platinum
and palladium (or platinum alone) are used as catalyst in this type of\
converter.
Visually check for presence of catalytic converter(s). Check
for external damage such as severe dents, removed or damaged heat
shields, etc. Also check for pellets or pieces of converter in the
tailpipe.
Fig. 5: Typical Oxidation Catalytic Converter (Pellet Type) Shown;
Typical Three-Way Catalytic Converter Is Similar
Courtesy of General Motors Corp.
Three-Way Catalyst (TWC)
This type of converter is nearly identical to a conventional
Spark control systems are designed to ensure the air/fuel
mixture is ignited at the best possible moment to provide optimum
efficiency and power and cleaner emissions.
Ensure vacuum hoses to the distributor, carburetor, spark
delay valves, thermal vacuum switches, etc., are in place and routed
properly. On Computerized Engine Controls (CEC), check for presence of\
required sensors (O2, MAP, CTS, TPS, etc.). Ensure they have not been
tampered with or modified.
Check for visible modification or replacement of the feedback
carburetor, fuel injection unit or injector(s) with a non-feedback
carburetor or fuel injection system. Check for modified emission-
related components unacceptable for use on pollution-controlled
vehicles.
AIR INJECTION SYSTEM (AIS)
Air Pump Injection System (AP)
The air pump is a belt-driven vane type pump, mounted to
engine in combination with other accessories. The air pump itself
consists of the pump housing, an inner air cavity, a rotor and a vane
assembly. As the vanes turn in the housing, filtered air is drawn in
through the intake port and pushed out through the exhaust port. See
Fig. 13 .
Check for missing or disconnected belt, check valve(s),
diverter valve(s), air distribution manifolds, etc. Check air
injection system for proper hose routing.
Fig. 13: Typical Air Pump Injection System
Courtesy of General Motors Corp.
Pulsed Secondary Air Injection (PAIR) System
PAIR eliminates the need for an air pump and most of the
associated hardware. Most systems consists of air delivery pipe(s),
pulse valve(s) and check valve(s). The check valve prevents exhaust
gases from entering the air injection system. See Fig. 14.
Ensure required check valve(s), diverter valve(s), air
distribution manifolds, etc., are present. Check air injection system
for proper hose routing.