'^^
Electrics
Seat Belt Pretensioner
6.6.26.1
Pretensioner Control Module -
Renew
Read the warnings given in system fault strategy
and service instructions on the previous page before
starting the following procedure.
Procedure
1.
Disconnect the battery ground (black) lead and
wait at least 10 minutes for the pretensioner power
supply to fully discharge before working on the
pretensioner system.
Note:
The
vehicle battery must
be
disconnected within
12
seconds
of switching off
the
ignition to avoid the alarm
siren sounding.
2. Motor the right front seat to its rearmost position.
3. Remove the floor carpet and the ECU cover.
4.
Disconnect the pretensioner control module
connector (orange connector with black safety
clip).
5. Remove 3 flange screws securing the module,
noting the position of the earth strap.
6. Fit the new pretensioner control module with the
connector facing to the rear and secure with 3
flange screwsensuringthatthe earth strap is secured
with the outboard rear screw.
7. Connect the orange connector to the control
module.
8. RefitandsecuretheECU cover and the floor carpet.
9. Reconnect the battery ground (black)
lead.
Note:
The
vehicle clock and the window control unit will
need
resetting
after completion of this procedure.
10.
Switch on the ignition and check that the airbag
warni ng I ight comes on when the ign ition
is
switched
on and extinguishesafterapproximately sixseconds
indicating satisfactory completion of the
pretensioner and airbag system self tests.
6.6.24.1
Pretensioner Assembly Renew
Read the warnings given in system fault strategy
and service i nstruaions on the previous page before
starting the following procedure.
1.
2.
4.
Procedure
Motor the drivers seat to its rearmost position.
Disconnect the battery ground (black) lead and
wait at least 10 minutes for the pretensioner power
supply to fully discharge before working on the
pretensioner system.
Note: Disconnect the battery within 12 seconds of
switchingoffthe ignition to avoid the alarm siren sounding.
Remove the pretensioner trim cover. Unbolt the
drivers seat. Tip the seat rearwards and disconnect
the seat and pretensioner squib connectors.
Release one bolt at the
base
of the seat belt
stal k
and
remove the pretensioner assembly.
Ensure that the safety clip is fitted to the connector
at the pretensioner squib. Fit the new assembly,
locating the anti-rotation peg into the rear hole of
the mounting bracket. Secure the assembly with
one bolt. Torque the bolt to 35Nm.
Safety Clip in place
5. Route the pretensioner lead between the seat and
the frame. Reconnect the seat and pretensioner
connectors. Ensure that the pretensioner connector
safety clip is secured. Refit the drivers seat and
loosely secure.
6. Reconnect the battery ground (black)
lead.
Note:
The
vehicle clock and
the
window control unit will
need
resetting
after completion of this procedure.
7. Switch on the ignition and check that the airbag
warn i ng I ight comes on when the ignition
is
switched
on and extingu
ishes
after approximately six seconds
indicating satisfactory completion of the
pretensioner and airbag system self tests.
8. Fit the front screws ensuring a 1.2mm gap between
screws and slide. Power the seat forwardTorque the
rear screws to 25 Nm. Power the seat backward.
Torque the front screws to 25 Nm.
September 1996 6-103
D=27
Electrics
Seat Belt Pretensioner
050C Pretensioner Squib High Resistance 050D Pretensioner squib low resistance
050C will be logged if the resistance of the
pretensioner squib circuit rises above 4.5 ±0.5C2
050D will be logged if the resistance of the
pretensioner squib circuit falls below 1.4 ±0.4Q
Procedure
Read the warnings given at the start of this
pretensioner diagnostics section.
Connect the PDU to the lower diagnostic socket
and access the pretensioner control module. Verify
that an 050C code is logged and note if the fault is
shown as internnittent. Note any other codes in the
DTC log and then clear ail codes.
Switch off the ignition and wait at least 10 minutes
for the pretensioner squib firing capacitors to fully
discharge before continuing with this procedure.
Disconnect the pretensioner squib connector at the
rearward harness. Disconnect the pretensioner
control module and temporarily cheat the squib
shorting link.
3.
Procedure
Read the warnings given at the start of this
pretensioner diagnostics section.
Connect the PDU to the lower diagnostic socket
and accessthe pretensioner control module. Verify
that an 050D code is logged and note if the fault is
shown as intermittent. Note any other codes in the
DTC log and then clear all codes.
Switch off the ignition and wait at least 10 minutes
for the pretensioner squib firing capacitors to fully
discharge before continuing with this procedure.
Disconnect the pretensioner squib connector atthe
rearward harness. Disconnect the pretensioner
control module and temporarily cheat the squib
shorting link.
Note: The control module harness connector has a
shorting link which
short
circuits the squib
lines together
when the connector is displaced. Carefully insert a
suitable non-metallic
cheater to
remove
the short
circuit
between pins 11 and 12 before continuing with fault
diagnosis.
.j^ 'o o ob bo oooooooo
O O O
iV ^3 ^3 ^3 ^3 ^3 ^
lU Insert cheater here
Check the continuity of the squib feed and return
lines.
If any significant resistance is measured,
service the wiring as necessary.
Also check the condition of the connector pins for
damage or lack of tension and service
as
necessary.
If the circuit resistance is acceptable and the
connector pins are good, go to step 6.
If any defects are identified and serviced, go to step
7.
If the checks in step 4 are good, the high circuit
resistance must be in the pretensioner squib or in
thecontrol module. Replace the pretensioner squib
and reconnect all components.
Clearall logged DTCs from the pretensioner control
module and then test the vehicle.
If the 050C code is logged again, replace the
control module.
Note: The control module harness connector has a
shorting link which
short
circuits the squib
lines together
when the connector is displaced. Carefully insert a
suitable non-metallic
cheater to remove the
short circuit
between pins 11 and 12 before continuing with fault
diagnosis.
Insert cheater here
Check the continuity from the squib feed line to the
squib return line. With the shorting link cheated,
the resistance should be more than lOkQ. If the
resistance is less than 10kQ, service the wiring as
necessary.
Also check the connector pins for any damage
which could cause an unintentional short circuit.
If the checks in step 5 are good, the low circuit
resistance must be in the pretensioner squib or in
thecontrol module. Replace the pretensioner squib
and reconnect all components.
Clearall logged DTCs from the pretensioner control
module and then test the vehicle.
If the 050D code is logged again, replace the
control module.
September 1996 6-107
Electrics
Seat Belt Pretensioner
Check the continuity of
the
line from pretensioner
control module pin 2 to instrument pack green
connector pin 2.
If continuity is approximately
OQ,
go to step 5.
If the line resistance
is
significantly greater
than
OQ,
service the wiring as necessary. Reconnect all
components and test the vehicle to ensure that the
problem is resolved.
Ifthe lamp
and
wiring
checks are
good,
the
fault lies
in the instrument pack or in the control module.
Replace the control module and retest. Ifthe fault
persists, replace the instrument
pack.
Reconnectall
components and test the vehicle to ensure that the
problem is resolved.
Pretensioner Control Module Internal
Faults
The following codes indicate internal faults within the
pretensioner control module.
0209 Safing sensor error
030A Temperature sensor error
0D13 Capacitor voltage error
0D14 Capacitor capacitance
0D09 Energy reserve switch
0D1E Energy shutdown switch
050E Seatbelt pretensioner switch error
0109 Accelerometer function
01OA Acceleration out of range
01 OB
Acceierometer offset
OAOC Analogue voltage error
090A EEPROM not programmed
0909 EEPROM checksum
090C RAM check error
060E Warning lamp driver error
0A09 Communications error
OAOA External watchdog error
OAOB External watchdog time out
020A Safing sensor not closed
If any of the above codes are logged, replace the
pretensioner control module.
September 1996 6-109
^^?
Air Conditioning
System Description
System Description
The in-car temperature and humidity are regulated by the electronically controlled air conditioning system. The
system comprises four subsystems:
• heater matrix, supplied with water from the engine cooling system
• refrigeration
• vacuum
• electronic control
Apart from the ambient temperature sensor and the aspirated in-car temperature sensor, most of the components
are housed in the air conditioning unit (Fig. 1) situated behind the dash board, or in the engine compartment.
Figure 1.
Key to Fig. 1 - Left Hand Air Conditioning Unit
1.
Upper feedback potentiometer
2.
Water temperature switch
3. Lower feedback potentiometer
4.
Vacuum valve block
5. Vacuum restrictor
6. Condensate drain tube
Figure 2.
Key to Fig. 2 - Right Hand Air Conditioning Unit
1.
Upper servo motor
2.
Electronic control module
3. Lower servo motor
4.
Evaporator sensor
5. Condensate drain tube
Special Servicing Tools and Equipment
1 PDU system
1 Charging station
1 Leak detector
1 Temperature test box
1 Sanden compressor service tool kit
1 CM Type compressor service tool kit
1 Digital voltmeter
1 Multimeter
May 1996 8-7
Air Conditioning
Working Practices O" 15-^?
Working Practices
General
Be aware of, and comply
with,
all health and safety
requirements.
Before beginning any repair or service procedure,
disconnect the vehicle battery ground connection
and protect the vehicle from dirt or damage.
Work in a well ventilated, clean and tidy area.
Recovery and chargeequipment must comply
with,
or exceed the standard detailed in the General
Description.
Handling Refrigerant
Wear eye protection at all times.
Use gloves, keep skin that may come into contact
with refrigerant covered. If the refrigerant comes
into contactwith youreyesorskin wash the affected
area immediatelyw'ith cool water and seek medical
advice, do not attempt to treat yourself.
Avoid inhaling refrigerant vapour, it wil
your respiratory system.
irritate
Never use high pressure compressed air to flush out
a system. Under certain circumstances a
combination of HFC 134A and compressed air in
the presenceofa source ofcombustion (for instance,
welding or brazing equipment), results in an
explosion that releases toxic compounds into the
atmosphere.
The refrigerant and CFC 12 must never come into
contact with each other
as
they form an inseparable
mixture that can only be disposed of by incineration.
Do not vent refrigerant directly into the atmosphere,
always use approved recovery equipment.
Refrigerant is costly but it can be recycled. Clean
the refrigerant, using the recovery equipment and
reuse it.
Carry out LeakTestsonly with an electronic analyser
dedicated to Refrigerant El 34A.
Do not attemptto guess the amount of refrigerant in
a system, always recover it and recharge with the
correct charge weight. Do not depress the charge or
discharge port valves to check for the presence of
refrigerant.
Handling Lubricating Oil
Avoid breathinglubricantmist,itwillcauseirritation
to your respiratory system.
Always decant fresh oil from a sealed container. Do
not leave oil exposed to the atmosphere for any
reason other than to fill or empty a system; PAG oil
is hygroscopic (it absorbs water) and iscontaminated
rapidly by atmospheric moisture.
Following the recovery cycle do not reuse the oil
when it has been separated from the refrigerant;
dispose of the oil safely.
System Maintenance
Do not leave the system open to the atmosphere. If
a unit or part of the system is left open for more than
five minutes, it is advisable to renew the receiver-
dryer. There is not a safe period in which work is to
be carried out. Always plug pipes and units
immediately after disconnection and only remove
plugs when re-connecting.
If replacement parts are supplied without transit
plugs and seals do not use the parts. Return them to
your supplier.
Diagnostic equipment for pressure, mass and
volumeshouidbecalibrated regularly and certified
by a third party organisation.
Use extreme care when handling and securing
aluminium fittings, always use a backing spanner
and take special care when handlingtheevaporator.
Use only the correct or recommended tools for the
job and apply the manufacturer's torque
specifications.
Keep the working area, all components and tools
clean.
8-8 May 1996
^=2?
Air Conditioning
System Trouble Shooting
System Trouble Shooting
There are five basic symptoms associated with air conditioning fault diagnosis. It is very important to identify the area of
concern before starting a rectification procedure. Spend time with your customer on problem identification, and use the
following trouble shooting guide.
The following conditions are not in order of priority.
No Cooling
1.
Is the electrical circuit to the compressor clutch functional?
2.
Is the electrical circuit to the blower motor(s) functional?
3. Slack or broken compressor drive belt.
4.
Compressor partially or completely seized.
5. Compressor shaft seal leak (see 9).
6. Compressor valve or piston damag^ (may be indicated by small variation between HIGH & LOW side pressures
relative to engine speed).
7. Broken refrigerant pipe (causing total loss of refrigerant).
8. Leak in system (causing total loss of refrigerant).
9. Blocked filter in the receiver drier.
10.
Evaporator sensor disconnected?
11.
Dual pressure switch faulty?
Note:
Should a
leak or low
refrigerant be established as
the
cause,
follow
the procedures
for
Recovery-Recycle
-Recharge,
and
observe all refrigerant and oil handling instructions.
insufficient Cooing
1.
Blower motor(s) sluggish.
2.
Restricted blower inlet or outlet passage
3. Blocked or partially restricted condenser matrix or fins.
4.
Blocked or partially restricted evaporator matrix.
5. Blocked or partially restricted filter in the receiver drier.
6. Blocked or partially restricted expansion valve.
7. Partially collapsed flexible pipe.
8. Expansion valve temperature sensor faulty (this sensor is integral with valve and is not serviceable).
9. Excessive moisture in the system.
10.
Air in the system.
11.
Low refrigerant charge.
May 1996 8-17
^2?
Air Conditioning
Electronic Control Module
Electronic Control Module (ECM)
The Electronic Control Module (ECM) is located on the right hand side of the heater unit.
The ECM has a digital microprocessor that allows the air conditioning system to maintain the selected in-car
conditions. To do this it compares the signals from the in-car controls with those it receives from the system
temperature sensors and feedback
devices.
On the basis of these comparisons it makes appropriate voltage changes
to vary the blower motor
speed,
flap position and the state of other solenoids that effect the selected temperature
demand.
The ECM is a non-serviceable component but may be interrogated for system
testing.
Care must be exercised when
connecting
the test
equipment
as the ECM
may
be
irreparably
damaged
should any ofthe
test
pins
be
shorted or bent.
20 21 22 23
Q
A / A \/
Em
10 11
1.
Electronic control module (ECM)
2.
Differential temperature control
3. Temperature control
4.
Fan speed control
5. Ambient temperature sensor
6. Motorised in-car aspirator
7. Evaporator temperature sensor
8. Coolant temperature switch
9. Lower flap feedback potentiometer
10.
Upper flap feed back potentiometer
11.
Left hand blower motor feedback
12.
Right hand blower motor feedback
13.
High speed relay
14.
High speed relay
15.
Compressor clutch
16.
Blower motor
17.
Blower motor
18.
Lower flap servo motor
19.
LIpper flap servo motor
20.
Defrost vacuum solenoid
21.
Auto re-circulation vacuum solenoid
22.
Centre vent vacuum solenoid
23.
Water valve vacuum solenoid
24.
Air conditioning function switch
May 1996 8-19
^?
Air Conditioning
Sanden Compressor SD7H15
Sanden Compressor SD7H15
The Sanden SD7H15 compressor
is a 7
cylinder
machine with
a
bore
of
29.3
mm (1.15 in) and a
stroke
of
32.8
mm (1.29
inches).
The displacement
per
revolution
is
155cc
(9.5
cubic inches).
The magnetic clutch
is
engineered with
the
compressor
as a
complete assembly resulting
in a
relatively small unit
of
lightweight construction.
The compressor may be mounted up to 90° from
its
upright position.
The compressor incorporates
a
lubrication system
which reduces the
oil
circulation ratio
to a
level
of
less than
2% at 1800 rpm.
An
oil
deflector
and
positive pressure differential
lubrication system promotes oiling
to the
cylinder
wall,
piston
rod
assemblies, main bearings
and
shaft
seal,
and
ensures that
oil
circulation
to the
refrigeration circuit
is
kept
to a
minimum.
The
compressor ischarged
with!
35 cc(4.6fluid ounces)
ofSunico NoSGSoil at the factory. Only this oil
or
oneoftheequivalentoilsdetailed below should
be
used.
Key
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
to Fig. 2.
Service port
Cylinder head
Hose connection
Anti-rotation gear
Oil filler plug
Planet plate
Clutch bearing
Electromagnetic clutch
Valve plate assembly
Cylinder and valve plate gasket
Cylinder block
Piston
Cam rotor
Needle thrust bearing
Front housing and 'O' ring
Shaft seal
Compressor Oils
Suni
CO
No 5GS
Texaco Capella E
Virginia Chemicals 500 Viscosity
13
14 15 16
Figure
2.
May
1996
8-37