196
CRUISE CONTROL
CURRENT IS APPLIED AT ALL TIMES THROUGH STOP FUSE TO TERMINAL 1 OF THE CRUISE CONTROL ECU AND TERMINAL 2 OF
STOP LIGHT SW, AND ALSO THROUGH THE STOP FUSE TO TERMINAL 15 OF CRUISE CONTROL ECU.
WITH THE IGNITION SW TURNED TO ON, THE CURRENT FLOWS THROUGH GAUGE FUSE TO TERMINAL (A) 6 OF COMBINATION
METER AND THE CURRENT THROUGH ECU±IG FUSE FLOWS TO TERMINAL 14 OF CRUISE CONTROL ECU.
WHEN THE IGNITION SW IS ON AND THE CRUISE CONTROL MAIN SW IS TURNED ON, A SIGNAL IS INPUT FROM TERMINAL 15 OF
CRUISE CONTROL MAIN SW TO TERMINAL 4 OF CRUISE CONTROL ECU. AS A RESULT, THE CRUISE CONTROL ECU FUNCTIONS
AND THE CURRENT TO TERMINAL 14 OF CRUISE CONTROL ECU TO TERMINAL 13 OF CRUISE CONTROL ECU " GROUND, AND
THE CRUISE CONTROL SYSTEM IS IN A CONDITION READY FOR OPERATION.
AT THE SAME TIME, THE CURRENT THROUGH THE GAUGE FUSE FLOWS FROM TERMINAL (A) 6 OF CRUISE CONTROL INDICATOR
LIGHT " TERMINAL (B) 9 " TERMINAL 5 OF CRUISE CONTROL ECU " TERMINAL 13 " TO GROUND, CAUSING THE CRUISE
CONTROL INDICATOR LIGHT TO LIGHT UP, INDICATING THAT THE CRUISE CONTROL IS READY FOR OPERATION.
1. SET OPERATION
WHEN THE CRUISE CONTROL MAIN SW IS TURNED ON AND THE SET SW IS TURNED ON WITH THE VEHICLE SPEED WITHIN THE
SET LIMIT (APPROX. 40 KM/H, 25 MPH TO 200 KM/H, 124 MPH), A SIGNAL IS INPUT TO TERMINAL 18 OF THE CRUISE CONTROL ECU
AND THE VEHICLE SPEED AT THE TIME THE SET SW IS RELEASED IS MEMORIZED IN THE ECU AS THE SET SPEED.
2. SET SPEED CONTROL
DURING CRUISE CONTROL DRIVING, THE ECU COMPARES THE SET SPEED MEMORIZED IN THE ECU WITH THE ACTUAL VEHICLE
SPEED INPUT INTO TERMINAL 20 OF THE CRUISE CONTROL ECU FROM THE VEHICLE SPEED SENSOR (SPEED SENSOR), AND
CONTROLS THE CRUISE CONTROL ACTUATOR TO MAINTAIN THE SET SPEED.
WHEN THE ACTUAL SPEED IS LOWER THAN THE SET SPEED, THE ECU CAUSES THE CURRENT TO THE CRUISE CONTROL
ACTUATOR TO FLOW FROM TERMINAL 12" TERMINAL 6 OF CRUISE CONTROL ACTUATOR "TERMINAL 7 "TERMINAL 11 OF
CRUISE CONTROL ECU. AS A RESULT, THE MOTOR IN THE CRUISE CONTROL ACTUATOR IS ROTATED TO OPEN THE THROTTLE
VALVE AND THE THROTTLE CABLE IS PULLED TO INCREASE THE VEHICLE SPEED. WHEN THE ACTUAL DRIVING SPEED IS HIGHER
THAN THE SET SPEED, THE CURRENT TO CRUISE CONTROL ACTUATOR FLOWS FROM TERMINAL 11 OF ECU "TERMINAL 7 OF
CRUISE CONTROL ACTUATOR "TERMINAL 6 "TERMINAL 12 OF CRUISE CONTROL ECU.
THIS CAUSES THE MOTOR IN THE CRUISE CONTROL ACTUATOR TO ROTATE TO CLOSE THE THROTTLE VALVE AND RETURN THE
THROTTLE CABLE TO DECREASE THE VEHICLE SPEED.
3. COAST CONTROL
DURING THE CRUISE CONTROL DRIVING, WHILE THE COAST SW IS ON, THE CRUISE CONTROL ACTUATOR RETURNS THE
THROTTLE CABLE TO CLOSE THE THROTTLE VALVE AND DECREASE THE DRIVING SPEED. THE VEHICLE SPEED WHEN THE COAST
SW IS TURNED OFF IS MEMORIZED AND THE VEHICLE CONTINUES AT THE NEW SET SPEED.
4. ACCEL CONTROL
DURING CRUISE CONTROL DRIVING, WHILE THE ACCEL SW IS TURNED ON, THE CRUISE CONTROL ACTUATOR PULLS THE
THROTTLE CABLE TO OPEN THE THROTTLE VALVE AND INCREASE THE DRIVING SPEED.
THE VEHICLE SPEED WHEN THE ACCEL SW IS TURNED OFF IS MEMORIZED AND THE VEHICLE CONTINUES AT THE NEW SET
SPEED.
5. RESUME CONTROL
UNLESS THE VEHICLE SPEED FALLS BELOW THE MINIMUM SPEED LIMIT (APPROX. 40 KM/H, 25 MPH) AFTER CANCELING THE SET
SPEED BY THE CANCEL SW, PUSHING THE RESUME SW WILL CAUSE THE VEHICLE TO RESUME THE SPEED SET BEFORE
CANCELLATION.
6. MANUAL CANCEL MECHANISM
IF ANY OF THE FOLLOWING OPERATIONS OCCURS DURING CRUISE CONTROL OPERATION, CURRENT FLOW TO MAGNETIC
CLUTCH OF THE ACTUATOR IS CUT TURNS OFF AND THE MOTOR ROTATES TO CLOSE THE THROTTLE VALVE AND THE CRUISE
CONTROL IS RELEASED.
*PLACING THE SHIFT LEVER IN ªNº POSITION (PARK/NEUTRAL POSITION SW (NEUTRAL START SW ON). ªSIGNAL INPUT TO
TERMINAL 2 OF ECUº (A/T)
*DEPRESSING THE CLUTCH PEDAL (CLUCH SW ON). ªSIGNAL INPUT TO TERMINAL 2 OF THE ECUº (M/T)
*DEPRESSING THE BRAKE PEDAL (STOP LIGHT SW ON). ªSIGNAL INPUT TO TERMINAL 16 OF ECUº
*PUSH THE CANCEL SW (CANCEL SW ON). ªSIGNAL INPUT TO TERMINAL 18 OF ECUº
*DEPRESSING THE PARKING BRAKE PEDAL (PARKING BRAKE SW ON). ªSIGNAL INPUT TO TERMINAL 3 OF ECUº (3VZ±FE)
*PULLING THE PARKING BRAKE LEVER (PARKING BRAKE SW ON). ªSIGNAL INPUT TO TERMINAL 3 OF THE ECUº (5S±FE)
SYSTEM OUTLINE
199
3
3C
28D 6 C 1
234I6
I18 I18
C
D B 20 A32 B7B1B22
C 5D 6D 3
D 112 1
BRG±OR±L L±R R±L
L±R BR BR
GR±B G±W
G± OL±R B±Y L±WG
BR
BR
R±L R±L
L±R L±RL±R
G±O THW IDL VTA VCP E2
L±W
L±WII2 4
R±L ENGINE COOLANT TEMP.
SENSOR(
EFI WATER
TEMP. SENSOR)
FROM
CRUISE CONTROL ECU
THROTTLE POSITION
SENSORFROM POWER SOURCE SYSTEM(
SEE PAGE 64)
JUNCTION
CONNECTOR
POWER
NORMAL ELECTRONIC CONTROLLED
TRANSMISSION
PATTERN SELECT SW
TE 2 TE1OD2
E1 TE 2 TE1
DA TA LINK CONNECTOR 1
(
CHECK CONNECTOR)JUNCTION
CONNECTOR D 12
SPEED
IP3 11 IP314 5124
G±B
G
23
1 VEHICLE SPEED
SENSOR
(
SPEED SENSOR)
LGP
R±L SP1
COMBINATION
METER
V5C8 T1
J3
E6E4
J1
D1I18II1 6
L±R TO
COMBINATION
METERL±R
IN1 6IN13
R±L
B E7 ,E8
AC,E9
ENGINE CONTROL MODULE(
ENGINE AND ELECTRONIC CONTROLLED TRANSMISSION ECU)
FROM
COOLING FAN ECU
L
D ,E10
IP 1 1
G± W
V±Y V±Y
AA
JUNCTION
CONNECTOR J7
BR
1K 81D6
3D 223D 10
10A
GAUGE
201
PREVIOUS AUTOMATIC TRANSMISSIONS HAVE SELECTED EACH GEAR SHIFT USING MECHANICALLY CONTROLLED THROTTLE
HYDRAULIC PRESSURE, GOVERNOR HYDRAULIC PRESSURE AND LOCK±UP HYDRAULIC PRESSURE. THE ELECTRONIC
CONTROLLED TRANSMISSION, HOWEVER, ELECTRICALLY CONTROLS THE LINE PRESSURE AND LOCK±UP PRESSURE ETC.,
THROUGH THE SOLENOID VALVE. ENGINE CONTROL MODULE (ENGINE AND ELECTRONIC CONTROLLED TRANSMISSION ECU)
CONTROL OF THE SOLENOID VALVE BASED ON THE INPUT SIGNALS FROM EACH SENSOR MAKES SMOOTH DRIVING POSSIBLE BY
SHIFT SELECTION FOR EACH GEAR WHICH IS MOST APPROPRIATE TO THE DRIVING CONDITIONS AT THAT TIME.
1. GEAR SHIFT OPERATION
DURING DRIVING, THE ENGINE CONTROL MODULE (ECU) SELECTS THE SHIFT FOR EACH GEAR WHICH IS MOST APPROPRIATE TO
THE DRIVING CONDITIONS, BASED ON INPUT SIGNALS FROM THE ENGINE COOLANT TEMP. SENSOR (EFI WATER TEMP. SENSOR)
TO TERMINAL THW OF THE ENGINE CONTROL MODULE (ECU), AND ALSO THE INPUT SIGNALS TO TERMINAL NC2+ OF THE ENGINE
CONTROL MODULE (ECU) FROM THE VEHICLE SPEED SENSOR (SPEED SENSOR) DEVOTED TO THE ELECTRONIC CONTROLLED
TRANSMISSION. CURRENT IS THEN OUTPUT TO THE ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS. WHEN SHIFTING TO
1ST SPEED, CURRENT FLOWS FROM TERMINAL S1 OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL 3 OF THE ELECTRONIC
CONTROLLED TRANSMISSION SOLENOIDS " GROUND, AND CONTINUITY TO THE NO. 1 SOLENOID CAUSES THE SHIFT.
FOR 2ND SPEED, CURRENT FLOWS FROM TERMINAL S1 OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL 3 OF THE
ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS " GROUND, AND FROM TERMINAL S2 OF THE ENGINE CONTROL
MODULE (ECU) " TERMINAL 1 OF THE ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS " GROUND, AND CONTINUITY TO
SOLENOIDS NO. 1 AND NO. 2 CAUSES THE SHIFT.
FOR 3RD SPEED, THERE IS NO CONTINUITY TO NO. 1 SOLENOID, ONLY TO NO. 2, CAUSING THE SHIFT.
SHIFTING INTO 4TH SPEED (OVERDRIVE) TAKES PLACE WHEN THERE IS NO CONTINUITY TO EITHER NO. 1 OR NO. 2 SOLENOID.
2. LOCK±UP OPERATION
WHEN THE ENGINE CONTROL MODULE (ECU) JUDGES FROM EACH SIGNAL THAT LOCK±UP OPERATION CONDITIONS HAVE BEEN
MET, CURRENT FLOWS FROM TERMINAL SL OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL 2 OF THE ELECTRONIC
CONTROLLED TRANSMISSION SOLENOID " GROUND, CAUSING CONTINUITY TO THE LOCK±UP SOLENOID AND CAUSING
LOCK±UP OPERATION.
3. STOP LIGHT SW CIRCUIT
IF THE BRAKE PEDAL IS DEPRESSED (STOP LIGHT SW ON) WHEN DRIVING IN LOCK±UP CONDITION, A SIGNAL IS INPUT TO
TERMINAL STP OF THE ENGINE CONTROL MODULE (ECU), THE ENGINE CONTROL MODULE (ECU) OPERATES AND CONTINUITY TO
THE LOCK±UP SOLENOID IS CUT.
4. OVERDRIVE CIRCUIT
*O/D MAIN SW ON
WHEN THE O/D MAIN SW IS TURNED ON (O/D OFF INDICATOR LIGHT TURNS OFF), A SIGNAL IS INPUT TO TERMINAL OD2 OF THE
ENGINE CONTROL MODULE (ECU) AND ENGINE CONTROL MODULE (ECU) OPERATION CAUSES GEAR SHIFT WHEN THE
CONDITIONS FOR OVERDRIVE ARE MET.
*O/D MAIN SW OFF
WHEN THE O/D MAIN SW IS TURNED TO OFF, THE CURRENT FLOWING THROUGH THE O/D OFF INDICATOR LIGHT FLOWS
THROUGH THE O/D MAIN SW TO GROUND. CAUSING THE INDICATOR LIGHT TO LIGHT UP. AT THE SAME TIME, A SIGNAL IS INPUT
TO TERMINAL OD2 OF THE ENGINE CONTROL MODULE (ECU) AND ENGINE CONTROL MODULE (ECU) OPERATION PREVENTS
SHIFT INTO OVERDIRVE.
5. ELECTRONIC CONTROLLED TRANSMISSION PATTERN SELECT SW CIRCUIT
IF THE ELECTRONIC CONTROLLED TRANSMISSION PATTERN SELECT SW IS CHANGED FROM NORMAL TO POWER, THE CURRENT
FLOWING THROUGH THE POWER INDICATOR FLOWS TO GROUND, CURRENT FLOWS TO TERMINAL P OF THE ENGINE CONTROL
MODULE (ECU), THE ENGINE CONTROL MODULE (ECU) OPERATES, AND SHIFT UP AND SHIFT DOWN OCCUR AT HIGHER VEHICLE
SPEEDS THAN WHEN THE SW IS IN NORMAL POSITION.
SYSTEM OUTLINE
204
ELECTRONIC CONTROLLED TRANSMISSION AND A/T INDICATOR (5S±FE)
A
C,B
A2D 2
2B 22C32D4
IP 1 11 IP312 IP 1 18
I23
A 1A3B1 A 12
BA 13
B1A 1
BATTA 4
B/KA 22
NSWB 12
IDLB 1
VCB 11
VTAB 9
E2
C 15S2
C 2S1
C 1SL
C 14E1
C 13E01
C 26E02
EBEC EDE21 2431
I18
E18 I18BRBR
BR
B±O B±O
G±W
R
BR
R
BR BRR B±W G±W G±WW±B
B±O
W±G B±O B±O
B±O
W±L
V
L±Y P±L
W±B
W±BBR W±B
L
B
FROM POWER SOURCE SYSTEM(
SEE PAGE 64)
15A
EFI
EFI MAIN
RE LA YTHROTTLE POSITION SENSOR
ELECTRONIC CONTROLLED
TRANSMISSION SOLENOID
FROM IGNITION
SW º ST1º
IP 316
BR
E2 ,E3
E7 E8 ,E10T1
A
B
WB
B 16E17
25 13
A 9
SPEED
IP3 11 IP314 5124
G±B
G
23
1 VEHICLE SPEED
SENSOR
(
SPEED SENSOR)
LGP
R±L SP1
COMBINATION
METER
V5C8V±Y V±Y
BR BR FROM MANIFOLD ABSOLUTE
PRESSURE SENSOR
(
V ACUUM S ENS OR) TO MANIFOLD ABSOLUTE
PRESSURE SENSOR
(
V ACUUM S ENS OR)
BR
BR
STOP LIGHT SW
G±R
G±W
2 1
S10
B
1 A 2
B 2B1
NOISE FILTER
(
FOR S TOP L IGHT) N2 ,N3
A
G± W
G±R NO. 3
(
LOCK±UP) NO. 1 NO. 2
E NGINE CONTROL MODULE(
ENGINE AND ELECTRONIC CONTROLLED TRANSMISSION ECU)
(
*3)
1A 15
3B 43C 191M 6
1D 97. 5A
IGN1M 315A
STOP
3D22
3D10
206
ELECTRONIC CONTROLLED TRANSMISSION AND A/T INDICATOR (5S±FE)
PREVIOUS AUTOMATIC TRANSMISSIONS HAVE SELECTED EACH GEAR SHIFT USING MECHANICALLY CONTROLLED THROTTLE
HYDRAULIC PRESSURE, GOVERNOR HYDRAULIC PRESSURE AND LOCK±UP HYDRAULIC PRESSURE. THE ELECTRONIC
CONTROLLED TRANSMISSION, HOWEVER, ELECTRICALLY CONTROLS THE LINE PRESSURE AND LOCK±UP PRESSURE ETC.,
THROUGH THE SOLENOID VALVE. ENGINE CONTROL MODULE (ENGINE AND ELECTRONIC CONTROLLED TRANSMISSION ECU)
CONTROL OF THE SOLENOID VALVE BASED ON THE INPUT SIGNALS FROM EACH SENSOR MAKES SMOOTH DRIVING POSSIBLE BY
SHIFT SELECTION FOR EACH GEAR WHICH IS MOST APPROPRIATE TO THE DRIVING CONDITIONS AT THAT TIME.
1. GEAR SHIFT OPERATION
DURING DRIVING, THE ENGINE CONTROL MODULE (ECU) SELECTS THE SHIFT FOR EACH GEAR WHICH IS MOST APPROPRIATE TO
THE DRIVING CONDITIONS, BASED ON INPUT SIGNALS FROM THE ENGINE COOLANT TEMP. SENSOR (EFI WATER TEMP. SENSOR)
TO TERMINAL THW OF THE ENGINE CONTROL MODULE (ECU), AND ALSO THE INPUT SIGNALS TO TERMINAL SP1 OF THE ENGINE
CONTROL MODULE (ECU) FROM THE VEHICLE SPEED SENSOR (SPEED SENSOR) DEVOTED TO THE ELECTRONIC CONTROLLED
TRANSMISSION. CURRENT IS THEN OUTPUT TO THE ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS. WHEN SHIFTING TO
1ST SPEED, CURRENT FLOWS FROM TERMINAL S1 OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL (A)3 OF THE
ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS " GROUND, AND CONTINUITY TO THE NO. 1 SOLENOID CAUSES THE
SHIFT.
FOR 2ND SPEED, CURRENT FLOWS FROM TERMINAL S1 OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL (A)3 OF THE
ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS " GROUND, AND FROM TERMINAL S2 OF THE ENGINE CONTROL
MODULE (ECU) " TERMINAL (A)1 OF THE ELECTRONIC CONTROL TRANSMISSION SOLENOIDS " GROUND, AND CONTINUITY TO
SOLENOIDS NO. 1 AND NO. 2 CAUSES THE SHIFT.
FOR 3RD SPEED, THERE IS NO CONTINUITY TO NO. 1 SOLENOID, ONLY TO NO. 2, CAUSING THE SHIFT.
SHIFTING INTO 4TH SPEED (OVERDRIVE) TAKES PLACE WHEN THERE IS NO CONTINUITY TO EITHER NO. 1 OR NO. 2 SOLENOID.
2. LOCK±UP OPERATION
WHEN THE ENGINE CONTROL MODULE (ECU) JUDGES FROM EACH SIGNAL THAT LOCK±UP OPERATION CONDITIONS HAVE BEEN
MET, CURRENT FLOWS FROM TERMINAL SL OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL (B)1 OF THE ELECTRONIC
CONTROLLED TRANSMISSION SOLENOID " GROUND, CAUSING CONTINUITY TO THE LOCK±UP SOLENOID AND CAUSING
LOCK±UP OPERATION.
3. STOP LIGHT SW CIRCUIT
IF THE BRAKE PEDAL IS DEPRESSED (STOP LIGHT SW ON) WHEN DRIVING IN LOCK±UP CONDITION, A SIGNAL IS INPUT TO
TERMINAL B/K OF THE ENGINE CONTROL MODULE (ECU), THE ENGINE CONTROL MODULE (ECU) OPERATES AND CONTINUITY TO
THE LOCK±UP SOLENOID IS CUT.
4. OVERDRIVE CIRCUIT
*O/D MAIN SW ON
WHEN THE O/D MAIN SW IS TURNED ON (O/D OFF INDICATOR LIGHT TURNS OFF), A SIGNAL IS INPUT TO TERMINAL OD2 OF THE
ENGINE CONTROL MODULE (ECU) AND ENGINE CONTROL MODULE (ECU) OPERATION CAUSES GEAR SHIFT WHEN THE
CONDITIONS FOR OVERDRIVE ARE MET.
*O/D MAIN SW OFF
WHEN THE O/D MAIN SW IS TURNED TO OFF, THE CURRENT FLOWING THROUGH THE O/D OFF INDICATOR LIGHT FLOWS
THROUGH THE O/D MAIN SW TO GROUND. CAUSING THE INDICATOR LIGHT TO LIGHT UP. AT THE SAME TIME, A SIGNAL IS INPUT
TO TERMINAL OD2 OF THE ENGINE CONTROL MODULE (ECU) AND ENGINE CONTROL MODULE (ECU) OPERATION PREVENTS
SHIFT INTO OVERDRIVE.
5. ELECTRONIC CONTROLLED TRANSMISSION PATTERN SELECT SW CIRCUIT
IF THE ELECTRONIC CONTROLLED TRANSMISSION PATTERN SELECT SW IS CHANGED FROM NORMAL TO POWER, THE CURRENT
FLOWING THROUGH THE POWER INDICATOR FLOWS TO GROUND, CURRENT FLOWS TO TERMINAL P OF THE ENGINE CONTROL
MODULE (ECU), THE ENGINE CONTROL MODULE (ECU) OPERATES, AND SHIFT UP AND SHIFT DOWN OCCUR AT HIGHER VEHICLE
SPEEDS THAN WHEN THE SW IS IN NORMAL POSITION.
E 7(C), E 8 (B), E10(A)ENGINE CONTROL MODULE (ENGINE AND ELECTRONIC CONTROLLED TRANSMISSION ECU)
(TURN ON THE IGNTION SW)
S1, S2 ±E1 :9.0±14.0 VOLTS WITH SOLENOID ON
0±1.5 VOLTS WITH SOLENOID OFF
P ±E1:7.5±14.0 VOLTS WITH IGNITION SW ON AND PATTERN SELECT SW AT POWER POSITION
L± E1:7.5±14.0 VOLTS WITH SHIFT LEVER AT L POSITION
2± E1:7.5±14.0 VOLTS WITH SHIFT LEVER AT 2 POSITION
R± E1:7.5±14.0 VOLTS WITH SHIFT LEVER AT R POSITION
B/K± E1:9.0±14.0 VOLTS WITH BRAKE PEDAL DEPRESSED
THW± E2:0.2±1.0 VOLTS WITH WITH ENGINE COOLANT TEMP. 60°C (140°F) ±120°C (248°F)
IDL± E2:0±1.5 VOLTS WITH THROTTLE VALVE FULLY CLOSED
9.0±14.0 VOLTS WITH THROTTLE VALVE FULLY OPENED
SYSTEM OUTLINE
SERVICE HINTS
244
ELECTRONICALLY CONTROLLED HYDRAULIC COOLING FAN (1MZ±FE)
1212
2 3EC1 8
ECEB I18
IP2 7
42 310 9 816 5
6 I18
B±R B±R W±R
LLB
L L±W L±W
L±W
L±R L±R W±BL±YY Y±LBR BR
E SOL+ SOL± TH± TH+ HPIGB TAC IDL FROM POWER SOURCE SYSTEM(
SEEPAGE64)
TO COMBINATION
METERFROM THROTTLE
POSITION SENSOR
FROM ENGINE CONTROL MODULE
(
ENGINE AND ELECTRONIC
CONTROLLED TRANSMISSION ECU)
SOLENOID VALVE
(
FOR HYDRAULIC MOTOR)
ENGINE COOLANT
TEMP. SENSOR
(
WATER TEMP. SENSOR)
(
FOR COOLING FAN)DATA LINK
CONNECTOR 1
(
CHECK
CONNECTOR)A/C SINGLE
PRESSURE SW COOLING FAN ECU C14
S1
E5D1 A2 OPT
3A 153C 16
1A 715A
ECU±IG