35
Level Control Systems
Principle of Operation
Ride Height Control Operations
In addition to the automatic ride-height control system for payload compensation, the dri-
ver can set three different vehicle ride heights.
Off-road (+25 mm), high ground clearance to a max. speed of 50 km/h
Standard (0 mm), normal ride level
Access (-35 mm), for entry and exit, loading and unloading to a max. speed of 35 km/h
or can be activated in Standard mode at road speeds < 25 km/h
The various heights are selected by scroll rocker. Light emitting diodes indicate the present
ride height setting.
Ride height can be adjusted from terminal 15 and with the doors closed. The hood and tail-
gate may be open.
The system also controls inclination automatically, like the single axle air suspension.
All control operations are executed without stopping at intermediate levels. The vehicle is
configured pneumatically in such a way that the front and rear axles can be lowered in par-
allel in any load situation. Depending on the load situation, either the front axle or the rear
axle is slightly quicker. On account of the different control speeds, a difference in height
between the two axles is possible during all control operations. If a max. permissible thresh-
old is exceeded, the quicker axle is stopped briefly.
The various levels can be preselected while travelling. Changeover between ride levels is
effected at the speed threshold values defined in the control unit. The control unit monitors
the change-over.
As soon as the driver sets a new target ride level by pressing a button or when a change-
over is initiated automatically by a specific driving condition, the LED for the current ride
level remains lit and the LED for the target ride level begins to flash.
When the new level is reached, the LED for the previous level goes out and the LED for the
new level reached stays lit permanently.
37
Level Control Systems
In addition to the LED indicator, the following text messages can
be displayed in the instrument cluster:
T TR
RA
AI
IL
LE
ER
R
M
MO
OD
DE
E
A coupled trailer is identified via the trailer connector. To avoid damaging the trailer and
the vehicle, changes of vehicle level are generally avoided. The standard level is "frozen."
If the trailer is coupled at a level other than the Standard level, the vehicle ride level is
not changed to Standard unless a button is pressed or the speed threshold for auto-
matic change-over is reached. The standard level is then "frozen" until the trailer con-
nector is disconnected.
R RI
ID
DE
E
H
HE
EI
IG
GH
HT
T
C
CO
ON
NT
TR
RO
OL
L
I
IN
NA
AC
CT
TI
IV
VE
E
Faults in the system and on the control unit which are only identified by the instrument
cluster, e.g. control unit disconnected
R RI
ID
DE
E
H
HE
EI
IG
GH
HT
T
C
CO
ON
NT
TR
RO
OL
L
I
IN
NA
AC
CT
TI
IV
VE
E
+
+
M
MA
AX
X.
.
6
60
0
k
km
m/
/h
h
For safety-critical faults (vehicle is too high or at inclination)
Control Modes
Sleep mode
If the vehicle is parked, it enters Sleep mode after 16 minutes. No further control opera-
tions are executed. A "watch dog" wakes up the control unit for a few minutes every 6
hours (wakeup mode) in order to compensate for possible inclination of the vehicle. (Vehicle
height may only be corrected once as air supply unit only operates with engine running.)
Wake-up
In wake-up mode, the control unit is woken up for a set period of time in order to com-
pensate for possible inclination of the vehicle. Inclination of the vehicle can be caused by
large temperature differences or by minor leaks. Adjustments to the front and rear axles
ensure that the vehicle is visually level. To minimize power consumption, the vehicle is low-
ered only. The nominal level of the lowest wheel serves as the nominal level for all other
wheels. The lowest nominal level to which the vehicle is lowered is the Access level (-35
mm).
Exception:if the vehicle is parked at Access level, the vehicle is lowered to max. -50 mm
in wake-up mode. If the vehicle is parked for a prolonged period of time and there is a leak
in the system, further loss of pressure does not produce a change of ride level since the
weight of the body is born by the auxiliary suspension and the residual tire pressure.
Advance /Overrun
When the vehicle is woken out of sleep mode by the load-cutout signal (VA), it normally
enters advance / overrun mode. Since the engine is not (no longer) running in this mode,
however, there are restrictions on the control operations that can be performed in order to
conserve the battery. Ride level compensation is restricted to tolerance ranges of 20 mm
and 25 mm in the up and down directions respectively. This serves to reduce the frequen-
cy of control operations.
38
Level Control Systems
All control operations in advance / overrun mode are executed as long as pressure is avail-
able in the accumulator. When the accumulator is empty and the engine is turned off, con-
trol operations are directly driven by the compressor. User-activated changes of ride level
and filling of the accumulator are not possible.
Terminal 15
As soon as the ignition is turned on (terminal 15), the user is allowed to lower the ride level
as required.
However, it is still not possible to raise the ride level or fill the accumulator.
Ride level is compensated outside a narrow tolerance range of 10 mm upwards and 10 mm
downwards.
Engine "on"
Ride level compensation, raising and lowering the vehicle's ride height as well as filling the
accumulator are permitted when the engine is running. The compressor also starts up dur-
ing every control operation.
Ride level is still compensated outside the narrow tolerance range of ±10 mm.
As long as the vehicle is stationary, high speed filtered ride level signals are used to detect
a change of load. This allows the system to react immediately to changes in ride level.
As soon as the vehicle is travelling, it changes over to low speed filtered ride-level signals.
The system no longer reacts to bump movements caused by road surface unevenness. A
mean value is formed over a prolonged period of time, i.e. payload is only altered by the
progressive emptying of the fuel tank.
The high speed filter is not used until the vehicle is stationary again and a lid is opened. If
no lid is opened, the vehicle logically cannot be loaded or unloaded.
SleepWake-Up
Power Down
Watch Dog
Ignition “ON”Advance/
Overrun
VA = Load Cutout Signal
Sleep = Temporary Power Down of Control Unit
Wake-up = Activating the Control Unit
Watch Dog = Monitoring
Engine Off
Engine On
Engine Running
Terminal 15 “ON” VA up
VA Down
Terminal 15 “OFF”
45
Level Control Systems
Air Springs
An identifying feature of the E65/E66 air spring is the internally guided air bellows. Internally
guided means that the bellows is guided in an aluminum casing. The bellows is support-
ed on this casing. This prevents the compression forces from weighing heavily on the bel-
lows.
This process allows the bellows to be manufactured from a thin, flexible diaphragm which
can react to minimal shocks and in this way provide a more comfortable suspension.
The diaphragm is composed of only one fabric layer embedded in rubber. The fibers with-
in the fabric run longitudinally along the spring strut. The bellows is therefore known as an
axial air bellows.
The bottom end of the air spring strut is enclosed
in a bellows in order to protect the diaphragm
against the mechanical effects of fouling (sand, dirt
etc.). The lower end of the bellows incorporates
small holes for pressure compensation in the
space between the roll piston and bellows. The
action of the bellows rolling in this space produces
pressure differences.
The bellows together with the roll piston contains
a volume of air that is sufficient for optimum sus-
pension.
A residual pressure holding valve on the air spring
strut prevents it from being depressurized. The air
spring strut remains under pressure in the event of
a loss of pressure in the system. The residual
pressure is 3.25 +/- 0.75 bar. This ensures that
the bellows is not damaged when the car is still
being moved.
The residual pressure holding valve is secured with
Loctite and must NOTbe removed.
The air spring strut is initially filled at the manufac-
turer to 10 bar. This pressure is reduced to 3.5 bar
when the spring strut is to be stored. Under this
pressure, the strut is extended to maximum
length.
The connection of the air spring struts to the air
supply unit (distributor block) is located on the left
of the luggage compartment under the flap on
which the wheel nut wrench is mounted.
49
Level Control Systems
Post Mode
The Post-mode is adopted in order to compensate any inclination or to adjust the ride
height after driving and between the Pre-mode and Sleep mode.
The Post-mode is limited in time to 1 minute. The Post-mode is only executed if the engine
has been running before the system switches into this mode. If the engine has not been
previously running, the system switches directly from Pre-mode into Sleep mode.
The control operation is performed in a narrow tolerance band of +/- 6mm and is terminat-
ed at +/- 4mm. The fast signal filter is used.
In the event of an inclination (Kerb Mode), the control operation takes place for the nominal
heights applicable in this situation.
Pre-Mode
The Pre-mode is activated by the “Load Cutoff” signal (e.g. by opening the door or unlock-
ing with the remote control). The Pre-mode then stays set for 16 minutes and is restarted
with a change in status.
The ride height of the vehicle is monitored and evaluated with a wide tolerance band.
In Pre-mode, the vehicle is only controlled un to the nominal height if the level is significantly
below the nominal height. The control tolerance band is -40mm from the mean value for
the single axle air suspension and -20mm for the dual axle system. This control tolerance
ensures that the vehicle is only controlled up in the case of large loads in order to increase
the ground clearance prior to departure. Small loads give rise to small compression travel
and this is compensated only when the engine is started. This control setting helps reduce
the battery load.
With the single axle air suspension, the vehicle is controlled down when the mean value
derived from both ride height signals is > 0mm and one side is in excess of +10mm. With
twin axle air suspension, the vehicle is controlled down when one side is >15mm.
In this mode, only the mean value of the two height signals is considered when deciding
whether there is an need for control operation.
The control operation is executed as long as pressure is available in the accumulator. When
the accumulator is empty and the engine is turned off, the control operation is driven direct-
ly by the compressor. User-activated changes of ride level and filling of the accumulator are
not possible.
Control operations which were started in other modes are continued with the inner toler-
ance bands applicable to these modes.
There is no inclination identification in Pre-mode.
53
Level Control Systems
Operating Principle
Initialization/Reset Performance
When the control unit is powered up after a reset (such as an undervoltage < 4.5 V or by a
load cutoff), different tests and initializations are performed. This system is only enabled
after the tests have been successfully completed and starts to execute the control pro-
grams on a cyclical basis.
Occurring faults are stored and displayed.
Control Sequence
In an ongoing control operation, the high pass filter (fast filter) is always used to prevent the
controlled height from overshooting the nominal value. If a low pass filter (slow filter) were
used to calculate the ride height, brief changes of ride height would be consumed. The
low-pass filter is used while the vehicle is driven. This type of filtering filters out vibrations
which are excited by the road surface.
The high pass filter is used to respond quickly to ride level deviations from setpoint. These
take place while the vehicle is stationary in the event of large load changes.
Both sides of the vehicle are controlled individually, i.e. even the setpoint/actual value com-
parison for both sides is carried out individually. Exception: check for undershooting of the
minimum height in Pre-mode and Kerf mode: consideration of the left and right mean val-
ues in each case.
The following stipulations are applicable here:
Raising before lowering
Activation of all valves with control in the same direction
Individual wheel deactivation
To ensure safe closing of the non-return valve in the air drier, the drain valve is actuated
briefly for 200ms after the control operation has ended.
The permissible ON period of the components is monitored while control up operation are
executed.