Page 184 of 878

CIRCUIT DESCRIPTION
See page EG±419 for the circuit description
DTC No.Diagnostic Trouble Code Detecting ConditionTrouble Area
(1) (Main heated*1) oxygen sensor voltage is
0.45 V or less (lean) for 90 sec. under codi±
tions (a) and (b):
(2 trip detection logic)*
2
(a) Engine coolant temp.: 70°C (158°F)
or more
(b) Engine speed: 1,500 rpm or more
(2)*1Difference of air±fuel ratio feedback
compensation value between front (No.
1 ~ 3 cylinders) and rear (No. 4 ~ 6
cylinders) is more than 15 percentage for
20 sec. or more under conditions (a)
and (b):
(2 trip detection logic)*
2
(a) Engine speed: 2,000 rpm or more
(b) Engine coolant temp.: Between 60°C
(140°F) and 95°C (203°F)
(1)*1Difference of air±fuel ratio feedback
compensation value between front (No.
1 ~ 3 cylinders) and rear (No. 4 ~ 6
cylinders) is more than 15 percentage for
20 sec. or more under conditions (a)
and (b):
(2 trip detection logic)*
2
(a) Engine speed: 2,000 rpm or more
(b) Engine coolant temp.: Between 60°C
(140°F) and 95°C (203°F)
(3)*1Engine speed varies by more than 15 rpm
over the preceding crank angle period
during a period of 20 sec. or more under
conditions (a) and (b):
(2 trip detection logic)*
2
(a) Engine speed: Idling
(b) Engine coolant temp.: Between 60°C
(140°F) and 95°C (203°F)
(2) Engine speed varies by more than 15 rpm
over the preceding crank angle period
during a period of 20 sec. or more under
conditions (a) and (b):
(2 trip detection logic)*
2
(a) Engine speed: Idling
(b) Engine coolant temp.: Between 60°C
(140°F) and 95°C (203°F)
*1: Only for California specification vehicles
*
2: See page EG±397.
Open or short in (main heated*1) oxygen
sensor circuit
(Main heated*
1) oxygen sensor
Ignition system
ECM
Open and short in injector circuit
Fuel line pressure (injector leak, blockage)
Mechanical system malfunction
(skipping teeth of timing belt)
Ignition system
Compression pressure (foreign object caught
in valve)
Volume air flow meter (air intake)
ECM
Open and short in injector circuit
Fuel line pressure (injector leak, blockage)
Mechanical system malfunction
(skipping teeth of timing belt)
Ignition system
Compression pressure (foreign object caught
in valve)
Volume air flow meter (air intake)
ECM
Open and short in injector circuit
Fuel line pressure (injector leak, blockage)
Mechanical system malfunction
(skipping teeth of timing belt)
Ignition system
Compression pressure (foreign object caught
in valve)
Volume air flow meter (air intake)
ECM
Open and short in injector circuit
Fuel line pressure (injector leak, blockage)
Mechanical system malfunction
(skipping teeth of timing belt)
Ignition system
Compression pressure (foreign object caught
in valve)
Volume air flow meter (air intake)
ECM
DTC 25 26 Air±Fuel Ratio Lean Rich Malfunction
EG±428± ENGINE2JZ±GE ENGINE TROUBLESHOOTING
Page 185 of 878

CIRCUIT DESCRIPTION (Cont'd)
DIAGNOSTIC TROUBLE CODE DETECTION DRIVING PATTERN
Purpose of the driving pattern.
(a) To simulate diagnostic trouble code detecting condition after diagnostic trouble code is recorded.
(b) To check that the malfunction is corrected when the repair is completed confirming that diagnostic
trouble code is no longer detected.
Malfunction: Open or Short in (Main Heated*) Oxygen Sensor
HINT: Before this test, check the feedback voltage for oxygen sensor.
(1) Disconnect the EFI No.1 fuse (30 A) for 10 sec. or more, with IG switch OFF. Initiate test
mode (Connect terminal TE2 and E1 of data link connector 2 with IG switch OFF).
(2) Start the engine and warm up.
(3) Idle the engine for 3 min.
(4) Race the engine at 2,000 rpm for 90 sec.
HINT: If a malfunction exists, the malfunction indicator lamp will light up during step (4).
NOTICE: If the conditions in this test are not strictly followed, detection of the malfunction
will not be possible.
± ENGINE2JZ±GE ENGINE TROUBLESHOOTINGEG±429
Page 186 of 878

See page
EG±421
(1) Disconnect the EFI No.1 fuse (30A) for 10 sec. or more, with IG switch OFF.
Initiate test mode (Connect terminal TE2 and E1 of data link connector 2
with IG switch OFF).
(2) Start the engine and warm up with all ACC switched OFF.
(3) Idle the engine for 5 min.
(After the engine is started, do not depress the accelerator pedal.)
(4) If the malfunction is not detected during idling, racing the engine without any load at
approx. 2,000 rpm for 60 sec.
HINT: If a malfunction exists, the malfunction indicator lamp will light up during the 5 min. idling
period or within 60 sec. of starting racing.
NOTICE: If the conditions in this test are not strictly followed, detection of the malfunction
will not be possible.
CIRCUIT DESCRIPTION (Cont'd)
DIAGNOSTIC TROUBLE CODE DETECTION DRIVING PATTERN
Purpose of the driving pattern.
(a) To simulate diagnostic trouble code detecting condition after diagnostic trouble code is recorded.
(b) To check that the malfunction is corrected when the repair is completed confirming that diagnostic
trouble code is no longer detected.
Malfunction: Open or Short in Injector circuit, Injector Leak or Blockage.
WIRING DIAGRAM
See page EG±421 for the WIRING DIAGRAM.
*: Only for California specification vehicles
EG±430± ENGINE2JZ±GE ENGINE TROUBLESHOOTING
Page 191 of 878

CIRCUIT DESCRIPTION (Cont'd)
DIAGNOSTIC TROUBLE CODE DETECTION DRIVING PATTERN
Purpose of the driving pattern.
(a) To simulate diagnostic trouble code detecting condition after diagnostic trouble code is recorded.
(b) To check that the malfunction is corrected when the repair is completed confirming that diagnostic
trouble code is no longer detected.
(1) Disconnect the EFI No.1 fuse (30A) for 10 sec. or more, with IG switch OFF.
Initiate test mode (Connect terminal TE2 and E1 of data link connector 2 with
IG switch OFF).
(2) Start the engine and warm up with all ACC switch OFF.
(3) Deive the vehicle at 80 ~ 88 km/h (50 ~ 55 mph) for 10 min. or more.
(4) Stop at a safe place and idle the engine for 2 min. or less.
(5) Accelerate to 96 km/h (60 mph) with the throttle valve fully open.
HINT: If a malfunction exists, the malfunction indicator lamp will light up during step (5).
NOTICE: If the conditions in this test are not strictly followed, detection of the malfunction
will not be possible.
Malfunction: Open or Short in Sub Heated Oxygen Sensor
± ENGINE2JZ±GE ENGINE TROUBLESHOOTINGEG±435
Page 194 of 878

DTC 31 Volume Air Flow Meter Circuit
CIRCUIT DESCRIPTION
As shown in the figure at right, when a pillar (Vortex
generating body is placed in the path of a uniform
flow, vortices called Karman±Vortex are generated
downstream of the object. Using this principle, a
vortex generator is placed inside the volume air
flow meter. By measuring the frequency of the vor-
tices generated, the ECM can determine the vol-
ume of air flowing through the volume air flow me-
ter. The vortices are detected by their exerting
pressure on thin metal foil mirror) surfaces and a
light emitting element and light receptor (LED and
photo transistor) positioned opposite the mirror
which optically senses the vibrations in the mirror.
The ECM uses these signals mainly for calculation
of the basic injection volume and the basic ignition
advance angle.
DTC No.Diagnostic Trouble Code Detecting ConditionTrouble Area
All conditions below are detected:
(a) No volume air flow meter signal to ECM
for 2 sec. when engine speed is above
300 rpm
(b) Engine stall Open or short in volume air flow meter
circuit
Volume air flow meter
ECM
if the ECM detects diagnostic trouble code ª31º, it operates the fail safe function, keeping the igni-
tion timing and fuel injection volume constant and making it possible to drive the vehicle. EG±438
± ENGINE2JZ±GE ENGINE TROUBLESHOOTING
Page 197 of 878

DTC 35 Barometric Pressure Sensor Circuit
CIRCUIT DESCRIPTION
The BARO sensor is built into the ECM. This is a semiconductor pressure sensor with properties which cause
its electrical resistance to change when stress is applied to the sensor's crystal (silicon) (piezoelectric effect).
This sensor is used to detect the atmospheric (absolute) pressure and outputs corresponding electrical signals.
Fluctuations in the air pressure cause changes in the intake air density, which can cause deviations in the air±
fuel ratio. The signals from BARO sensor are used to make corrections for these fluctuations. If the ECM detects
diagnostic trouble code º35º, the fail safe function operates and the atmospheric pressure is set at a constant
101.3 kPa (760 mmHg, 29.92 in.Hg).
DTC No. Diagnostic Trouble Code Detecting Condition Trouble Area
35
Open or short in BARO sensor circuit for 0.5
ECM 35 Oen or short in BARO sensor circuit for 0.5
sec. or more ECM
INSPECTION PROCEDURE
Are there any other codes (besides Code 35) being output?
Go to relevant diagnostic trouble code chart.
Replace engine control module.
± ENGINE2JZ±GE ENGINE TROUBLESHOOTINGEG±441
Page 198 of 878

DTC 41 Throttle Position Sensor Circuit
CIRCUIT DESCRIPTION
The throttle position sensor is mounted in the throttle
body and detects the throttle valve opening angle. When
the throttle valve is fully closed, the IDL contacts in the
throttle position sensor are on, so the voltage at the ter-
minal IDL of the ECM becomes 0 V. At this time, a voltage
of approximately 0.7 V is applied to the terminal VTA of
the ECM. When the throttle valve is opened, the IDL con-
tacts go off and thus the power source voltage of approx-
imately 12 V in the ECM is applied to the terminal IDL of
the ECM. The voltage applied to the terminal VTA of the
ECM increases in the proportion to the opening angle of
the throttle valve and becomes approximately 3.2 ± 4.9
V when the throttle valve is fully opened. The ECM
judges the vehicles driving conditions from these signals
input from the terminals VTA and IDL, and uses them as
one of the conditions for deciding the air±fuel ratio
correction, power increase correction and fuel±cut con-
trol etc.
Diagnostic Trouble Code Detecting ConditionDTC No.Trouble Area
Open or short in throttle position sensor
circuit
Throttle position sensor
ECM
Open or short in throttle position sensor circuit
for 0.5 sec. or more
HINT:
When the connector for the throttle position sensor is disconnected, diagnostic trouble code 41 is not displayed.
Diagnostic trouble code 41 is displayed only when there is an open or short in the VTA signal circuit of the throttle
position sensor.
EG±442± ENGINE2JZ±GE ENGINE TROUBLESHOOTING
Page 199 of 878
INSPECTION PROCEDURE
HINT:
wIf diagnostic trouble code º22º (engine coolant temperature sensor circuit), º24º (intake air temperature
sensor circuit) and º41º (throttle position sensor circuit) are output simultaneously, E2 (sensor ground) may
be open.
(See page EG±219)
Check voltage between VTA1, IDL1 and E2 of engine control module connec-
tor.
(1) Connect SST (check harness ªAº).
(See page EG±404)
SST 09990±01000
(2) Turn ignition switch ON.
(3) Disconnect the vacuum hose from the throttle
body, then apply vacuum to the throttle opener.
(See page EG±219)
Measure voltage between terminals VTA1, IDL1
and E2 of engine control module connector when
the throttle valve is opened gradually from the
closed condition.
Check for intermittent problems.
(See page EG±399)
The voltage should increase steadily in proportion
to the throttle valve opening angle.
Terminal
Throttle Valve
Fully Closed
Fully Open
± ENGINE2JZ±GE ENGINE TROUBLESHOOTINGEG±443